共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta (TGF-beta) is thought to play a role in the pathobiological progression of ovarian cancer because this peptide hormone is overexpressed in cancer tissue, plasma, and peritoneal fluid. In the current study, we investigated the role of the TGF-beta/Smad3 pathway in ovarian cancer metastasis by regulation of an epithelial-to-mesenchymal transition. When cancer cells were cultured on plastic, TGF-beta1, TGF-beta2, and TGF-beta3 induced pro-matrix metalloproteinase (MMP) secretion, loss of cell-cell junctions, down-regulation of E-cadherin, up-regulation of N-cadherin, and acquisition of a fibroblastoid phenotype, consistent with an epithelial-to-mesenchymal transition. Furthermore, Smad3 small interfering RNA transfection inhibited TGF-beta-mediated changes to a fibroblastic morphology, but not MMP secretion. When cancer cells were cultured on a three-dimensional collagen matrix, TGF-beta1, TGF-beta2, and TGF-beta3 stimulated both pro-MMP and active MMP secretion and invasion. Smad3 small interfering RNA transfection of cells cultured on a collagen matrix abrogated TGF-beta-stimulated invasion and MMP secretion. Analysis of Smad3 nuclear expression in microarrays of serous benign tumors, borderline tumors, and cystadenocarcinoma revealed that Smad3 expression could be used to distinguish benign and borderline tumors from carcinoma (P = 0.006). Higher Smad3 expression also correlated with poor survival (P = 0.031). Furthermore, a direct relationship exists between Smad3 nuclear expression and expression of the mesenchymal marker N-cadherin in cancer patients (P = 0.0057). Collectively, these results implicate an important role for the TGF-beta/Smad3 pathway in mediating ovarian oncogenesis by enhancing metastatic potential. 相似文献
2.
Shan B Yao TP Nguyen HT Zhuo Y Levy DR Klingsberg RC Tao H Palmer ML Holder KN Lasky JA 《The Journal of biological chemistry》2008,283(30):21065-21073
The aberrant expression of transforming growth factor (TGF)-beta1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-beta1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including alpha-tubulin, and regulates cell motility. We showed that TGF-beta1-induced EMT is accompanied by HDAC6-dependent deacetylation of alpha-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-beta1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-beta1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of alpha-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-beta-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis. 相似文献
3.
Rodriguez C Huang LJ Son JK McKee A Xiao Z Lodish HF 《The Journal of biological chemistry》2001,276(32):30224-30230
Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development. 相似文献
4.
5.
6.
Transforming growth factor-beta (TGF-beta) has multiple functions including increasing extracellular matrix deposition in fibrosis. It functions through a complex family of cell surface receptors that mediate downstream signaling. We report here that a transmembrane heparan sulfate proteoglycan, syndecan-2 (S2), can regulate TGF-beta signaling. S2 protein increased in the renal interstitium in diabetes and regulated TGF-beta-mediated increased matrix deposition in vitro. Transfection of renal papillary fibroblasts with S2 or a S2 construct that has a truncated cytoplasmic domain (S2DeltaS) promoted TGF-beta binding and S2 core protein ectodomain directly bound TGF-beta. Transfection with S2 increased the amounts of type I and type II TGF-beta receptors (TbetaRI and TbetaRII), whereas S2DeltaS was much less effective. In contrast, S2DeltaS dramatically increased the level of type III TGF-beta receptor (TbetaRIII), betaglycan, whereas S2 resulted in a decrease. Syndecan-2 specifically co-immunoprecipitated with betaglycan but not with TbetaRI or TbetaRII. This is a novel mechanism of control of TGF-beta action that may be important in fibrosis. 相似文献
7.
8.
Inhibition of Nb2 T-lymphoma cell growth by transforming growth factor-beta. 总被引:1,自引:0,他引:1 下载免费PDF全文
E J Rayhel D A Prentice P S Tabor W H Flurkey R W Geib R F Laherty S B Schnitzer R Chen J P Hughes 《The Biochemical journal》1988,253(1):295-298
1. Mitochondria isolated from the gut-dwelling nematodes Nippostrongylus brasiliensis and Ascaridia galli (muscle and gut + reproductive tissue) were examined for cytochromes, and it was observed that N. brasiliensis and A. galli muscle tissue mitochondria contained a-, b- and c-type cytochromes, but their stoichiometries were quite different (1:2:1.9 and 1:11.4:13.6 respectively); A. galli gut + reproductive-tissue mitochondria, however, only contained b and c cytochromes, in a ratio of 1:0.8. 2. CO difference spectra showed the presence of CO-reacting b-type cytochrome(s) in all three types of mitochondria; the fast-reacting species comprised 30, 44 and 39% of the total in N. brasiliensis, A. galli muscle and A. galli gut + reproductive-tissue mitochondria respectively. 3. Cytochrome aa3 was observed in N. brasiliensis mitochondria and in those from A. galli muscle, but was below the level of detectability (less than 0.005 nmol/mg of protein) for A. galli gut + reproductive-tissue mitochondria. 4. Photochemical action spectra for the reversal of CO inhibition of the endogenous respiration of whole worms (at 24 microM- and 40 microM-O2 respectively for N. brasiliensis and A. galli) gave maxima at 598 and 542-543 nm, corresponding to the alpha- and beta-absorption maxima of cytochrome aa3, and at 567 nm (b-type cytochrome) for both worms. These results suggest that cytochrome aa3 is the major functional oxidase in N. brasiliensis, whereas the CO-reacting b-type cytochrome dominates in A. galli. 相似文献
9.
10.
Wu K Yang Y Wang C Davoli MA D'Amico M Li A Cveklova K Kozmik Z Lisanti MP Russell RG Cvekl A Pestell RG 《The Journal of biological chemistry》2003,278(51):51673-51684
The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4. 相似文献
11.
12.
Scherner O Meurer SK Tihaa L Gressner AM Weiskirchen R 《The Journal of biological chemistry》2007,282(19):13934-13943
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway. 相似文献
13.
14.
Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta 总被引:2,自引:0,他引:2
Skeletal muscle satellite cells were cultured from mature rats and were treated in vitro with transforming growth factor-beta (TGF-beta). Muscle-specific protein synthesis and satellite cell fusion were used as indicators of muscle differentiation; a dose-dependent inhibition of differentiation was observed in response to TGF-beta. In addition, TGF-beta depressed cell proliferation in a dose-dependent manner. Half-maximal inhibition of differentiation was seen with a TGF-beta concentration of approximately 0.1 ng/ml. Although proliferation was not inhibited, it was depressed and half-maximal suppression of proliferation occurred in response to 0.1-0.5 ng TGF-beta/ml. Neonatal rat myoblasts were also subjected to TGF-beta treatment, and similar results were observed. Neonatal cells, however, were more sensitive to TGF-beta than satellite cells, as indicated by the reduced concentrations of TGF-beta required to inhibit differentiation and reduce the rate of proliferation. Under identical culture conditions proliferation of muscle-derived fibroblasts were also depressed. The differentiation inhibiting effect of TGF-beta on satellite cells was reversible. It has been suggested that TGF-beta could be an important regulator of tissue repair, and its in vitro effects on satellite cells suggest a possible role in regulation of muscle regeneration. 相似文献
15.
Inhibition of normal rat kidney cell growth by transforming growth factor-beta is mediated by collagen 总被引:10,自引:0,他引:10
We have investigated the mechanism of inhibition of the serum-free monolayer growth of normal rat kidney (NRK) cells by transforming growth factor-beta (TGF-beta). NRK cells grown on fibronectin-coated dishes exhibited a biphasic response to TGF-beta. Monolayer growth was slightly stimulated by subpicomolar concentrations, while picomolar concentrations of TGF-beta inhibited NRK cell growth in the presence or absence of epidermal growth factor. NRK cells exhibited a similar biphasic growth response to exogenous type I collagen. TGF-beta induced a 3-5-fold increase in the deposition of type I collagen-like proteins into the extracellular matrix of NRK cells during serum-free growth. Type I collagen-like proteins were identified by their sensitivity to degradation by purified bacterial collagenase and by Western blot analysis. The TGF-beta dose-response curves for induction of extracellular matrix-localized collagen and inhibition of NRK cell growth were similar. Finally, the inclusion of a purified bacterial collagenase, which did not degrade TGF-beta or TGF-beta receptors, or alter control NRK growth, prevented exogenous collagen or TGF-beta from inhibiting the serum-free growth of NRK cells. Our results demonstrate that an increase in collagen secretion plays an important role in the inhibition of the growth of NRK cells by TGF-beta. 相似文献
16.
Involvement of transforming growth factor-beta 1 signaling in hypoxia-induced tolerance to glucose starvation 总被引:2,自引:0,他引:2
Suzuki A Kusakai G Shimojo Y Chen J Ogura T Kobayashi M Esumi H 《The Journal of biological chemistry》2005,280(36):31557-31563
Because survival and growth of human hepatoma cells are maintained by nutrient, especially glucose, glucose starvation induces acute cell death. The cell death is markedly suppressed by hypoxia, and we have reported involvement of AMP-activated protein kinase-alpha (AMPK-alpha), Akt, and ARK5 in hypoxia-induced tolerance. In the current study we investigated the mechanism of hypoxia-induced tolerance in human hepatoma cell line HepG2. ARK5 expression was induced in HepG2 cells when they were subjected to glucose starvation, and we found that glucose starvation transiently induced Akt and AMPK-alpha phosphorylation and that hypoxia prolonged phosphorylation of both protein kinases. We also found that hypoxia-induced tolerance was partially abrogated by blocking the Akt/ARK5 system or by suppressing AMPK-alpha expression and that suppression of both completely abolished the tolerance, suggesting that AMPK-alpha activation signaling and the Akt/ARK5 system play independent essential roles in hypoxia-induced tolerance. By using chemical compounds that specifically inhibit kinase activity of type I-transforming growth factor-beta (TGF-beta) receptor, we showed an involvement of TGF-beta in hypoxia-induced tolerance. TGF-beta1 mRNA expression was induced by hypoxia in an hypoxia-inducible factor-1alpha-independent manner, and addition of recombinant TGF-beta suppressed cell death during glucose starvation even under normoxic condition. AMPK-alpha, Akt, and ARK5 were activated by TGF-beta1, and Akt and AMPK-alpha phosphorylation, which was prolonged by hypoxia, was suppressed by an inhibitor of type I TGF-beta receptor. Based on these findings, we propose that hypoxia-induced tumor cell tolerance to glucose starvation is caused by hypoxia-induced TGF-beta1 through AMPK-alpha activation and the Akt/ARK5 system. 相似文献
17.
Reddi AH 《Arthritis research & therapy》2006,8(1):101
Osteoarthritis is a common malady of the musculoskeletal system affecting the articular cartilage. The increased frequency of osteoarthritis with aging indicates the complex etiology of this disease, which includes pathophysiology and joint stability including biomechanics. The balance between anabolic morphogens and growth factors and catabolic cytokines is at the crux of the problem of osteoarthritis. One such signal is transforming growth factor-beta (TGF-beta). The impaired TGF-beta signaling has been identified as a culprit in old mice in a recent article in this journal. This commentary places this discovery in the context of anabolic and catabolic signals and articular cartilage homeostasis in the joint. 相似文献
18.
Filamin associates with Smads and regulates transforming growth factor-beta signaling 总被引:9,自引:0,他引:9
Sasaki A Masuda Y Ohta Y Ikeda K Watanabe K 《The Journal of biological chemistry》2001,276(21):17871-17877
19.
Kumar A Novoselov V Celeste AJ Wolfman NM ten Dijke P Kuehn MR 《The Journal of biological chemistry》2001,276(1):656-661
Nodal, a member of the transforming growth factor beta (TGF-beta) superfamily, is implicated in many events critical to the early vertebrate embryo, including mesoderm formation, anterior patterning, and left-right axis specification. Here we define the intracellular signaling pathway induced by recombinant nodal protein treatment of P19 embryonal carcinoma cells. Nodal signaling activates pAR3-Lux, a luciferase reporter previously shown to respond specifically to activin and TGF-beta. However, nodal is unable to induce pTlx2-Lux, a reporter specifically responsive to bone morphogenetic proteins. We also demonstrate that nodal induces p(CAGA)(12), a reporter previously shown to be specifically activated by Smad3. Expression of a dominant negative Smad2 significantly reduces the level of luciferase reporter activity induced by nodal treatment. Finally, we show that nodal signaling rapidly leads to the phosphorylation of Smad2. These results provide the first direct biochemical evidence that nodal signaling is mediated by both activin-TGF-beta pathway Smads, Smad2 and Smad3. We also show here that the extracellular cripto protein is required for nodal signaling, making it distinct from activin or TGF-beta signaling. 相似文献
20.
A novel modulatory mechanism of transforming growth factor-beta signaling through decorin and LRP-1 总被引:1,自引:0,他引:1
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that signals to the nucleus through cell surface transmembrane receptors with serine/threonine kinase activity and cytoplasmic effectors, including Smad proteins. Here we describe two novel modulators of this pathway, lipoprotein-receptor related protein (LRP-1) and decorin. Decorin null (Dcn null) myoblasts showed a diminished TGF-beta response that is restored by decorin re-expression. Importantly, this reactivation occurs without changes in the binding to TGF-beta receptors, Smad protein phosphorylation, or Smad-4 nuclear translocation. In wild type myoblasts, inhibition of decorin binding to LRP-1 and depletion of LRP-1 inhibited TGF-beta response to levels similar to those observed in Dcn null myoblasts. Re-expression of decorin in Dcn null myoblasts cannot restore TGF-beta response if the Smad pathway or phosphatidylinositol 3-kinase activity is inhibited, suggesting that this LRP-1-decorin modulatory pathway requires activation of the Smad pathway by TGF-beta and involves phosphatidylinositol 3-kinase activity. This work unveils a new regulatory mechanism for TGF-beta signaling by decorin and LRP-1. 相似文献