首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The reduction of putidaredoxin reductase by reduced pyridine nucleotides   总被引:1,自引:0,他引:1  
Putidaredoxin reductase (PdR), an FAD-containing protein, mediates the transfer of electrons from NADH to putidaredoxin in the cytochrome P-450cam-dependent oxidation of camphor. Using stopped-flow spectrophotometry, reduction of putidaredoxin reductase by NADH (70 microM) at 4 degrees C appeared to be a pseudo-first-order process with a rate constant in excess of 600 s-1. The reduction of putidaredoxin reductase by NADPH was much slower with a second-order rate constant of 530 s-1 M-1 at 4 degrees C. The reduction of the enzyme was monitored at several wavelengths: 455 nm to follow flavin reduction; 700 nm to follow the appearance of the long-wavelength charge-transfer complex; and 513 nm to detect the presence of a semiquinone form of the flavoprotein. There was no apparent semiquinone formation observed during reduction. The charge-transfer complex can be formed in the presence of NAD+, whereas, no charge-transfer band could be detected when PdR was reduced with NADPH. The titration of chemically or NADPH-reduced putidaredoxin reductase with either a stoichiometric or an excess amount of NAD+ resulted in the formation of a charge-transfer complex, indicating that the reduced form of PdR has a high affinity for NAD+ regardless of the method of reduction. The data presented indicate that putidaredoxin reductase is reduced without the formation of semiquinone intermediate and, upon reduction, forms a tight complex with NAD+. The Keq for the reduction of PdR by NADPH is 1.1 and the midpoint potential for this reaction is -317 +/- 5 mV.  相似文献   

4.
The first 12 NH2-terminal amino acids of the Pseudomonas putida putidaredoxin reductase were shown to be Met-Asn-Ala-Asn-Asp-Asn-Val-Val-Ile-Val-Gly-Thr. Comparison of these data with the DNA sequence of the BamHI-HindIII 197-base fragment derived from the PstI 2.2-kb fragment obtained from the P. putida plasmid showed that the putidaredoxin reductase gene was downstream from the cytochrome P-450 gene and the intergenic region had the 24-nucleotide sequence TAAACACATGGGAGTGCGTGCTAA. The Shine-Dalgarno sequence GGAG was detected in this region. The initiating triplet for the reductase gene was GTG, which normally codes for valine, but in the initiating codon position codes for methionine. From the amino acid sequence and X-ray data comparisons with other flavoproteins, what appears to be the AMP binding region of the FAD can be recognized in the NH2-terminal portion of the reductase involving residues 5–35.  相似文献   

5.
Abstract Dimethyl sulphoxide (DMSO) reductase activity in crude extracts of Saccharomyces cerevisiae NCYC240 was stimulated by addition of thioredoxin, but not by addition of thioredoxin reductase. The activity was partially purified. DEAE-cellulose could be used to separate thioredoxin and its reductase (which bound to the column) from the terminal DMSO-reductase protein (which failed to bind). The highly unstable purified terminal reductase so obtained required both thioredoxin and thioredoxin reductase to reconstitute activity with either dithiothreitol (DTT) or NADPH as electron donor. Partially purified terminal reductase had an M r of about 15000.  相似文献   

6.
The reaction of cytochalasin A with sulfhydryl groups was examined. Cysteine and glutathione reacted readily with cytochalasin A at pH 7.0, 20°C, following second-order kinetics with rate constants of 7,600 M?1 sec?1 and 870 × 103 M?1 sec?1. No reaction of cytochalasin B could be demonstrated under the same conditions. The reaction of cytochalasin A with the amino group of glycine ethyl ester had a second-order rate constant of 0.02 M?1 sec?1. Cytochalasin A did not react with sufhydryl groups of native ovalbumin or lactic dehydrogenase but reacted with an least 2 and 12 groups respectively when the proteins were denatured in 0.1% SDS. The reactivity of cytochalasin A with sulfhydryl groups is attributable to the α,β-unsaturated ketone groups it contains.  相似文献   

7.
The sulfhydryl groups of L-cysteine and reduced glutathione (GSH) react nonenzymatically with formaldehyde (F), acrolein (Al), acetaldehyde (AA), malondialdehyde (DAM), pyruvate (P), oxoglutarate (oxo-G) and glucose (G) to form thiazolidine derivatives. These reactions show different velocities and the adducts formed show different stabilities. The equilibrium constants K, as well as the rate constants kr for the reverse reaction, show considerable variation. The carbonyls reveal higher reactivity with sulfhydryl group of L-Cys than with those of GSH, and the stability of the adducts is higher than that of GSH. Al, F and AA react more rapidly with both thiol compounds than the other carbonyls, but the adducts are less stable. The sulfhydryl groups level of bovine serum albumin as well as those of high- and low-molecular thiols of human plasma is reduced in the presence of Al, F or DAM.  相似文献   

8.
9.
10.
11.
A study of the single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin was performed using the inhibitor metyrapone to trap the cytochrome immediately after release of the product, 5-exo-hydroxycamphor. EPR determinations of the concentrations of reduced putidaredoxin and ferric metyrapone-bound cytochrome at the same time points showed that there is no time lag between the oxidation of reduced putidaredoxin and the appearance of metyrapone-bound cytochrome. This implies that the rate constant for electron transfer is smaller than the rate constant for the later processes involved in product formation and release, lumped into a single step. Taking this restriction into account and doing computer simulation of absorbance versus time curves, previously obtained at various putidaredoxin concentrations using stopped-flow spectrophotometry, allowed bounds to be determined for rate constants of the processes within the reaction. At 4 degrees C in buffer at pH 7.4 with 0.50 M KCl, the rate constant for the bimolecular association of the two enzymes is between 3 and 20/microM.s; the rate constant for dissociation is between 12 and 600/s; the rate constant for electron transfer is between 60 and 100/s; and the rate constant for the later processes is at least 200/s.  相似文献   

12.
13.
The first 12 NH2-terminal amino acids of the Pseudomonas putida putidaredoxin reductase were shown to be Met-Asn-Ala-Asn-Asp-Asn-Val-Val-Ile-Val-Gly-Thr. Comparison of these data with the DNA sequence of the BamHI-HindIII 197-base fragment derived from the PstI 2.2-kb fragment obtained from the P. putida plasmid showed that the putidaredoxin reductase gene was downstream from the cytochrome P-450 gene and the intergenic region had the 24-nucleotide sequence TAAACACATGGGAGTGCGTGCTAA. The Shine-Dalgarno sequence GGAG was detected in this region. The initiating triplet for the reductase gene was GTG, which normally codes for valine, but in the initiating codon position codes for methionine. From the amino acid sequence and X-ray data comparisons with other flavoproteins, what appears to be the AMP binding region of the FAD can be recognized in the NH2-terminal portion of the reductase involving residues 5–35.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

14.
The R2 protein of ribonucleotide reductase features a di-iron site deeply buried in the protein interior. The apo form of the R2 protein has an unusual clustering of carboxylate side chains at the empty metal-binding site. In a previous study, it was found that the loss of the four positive charge equivalents of the diferrous site in the apo protein appeared to be compensated for by the protonation of two histidine and two carboxylate side chains. We have studied the consequences of removing and introducing charged residues on the local hydrogen-bonding pattern in the region of the carboxylate cluster of Corynebacterium ammoniagenes and Escherichia coli protein R2 using site-directed mutagenesis and X-ray crystallography. The structures of the metal-free forms of wild-type C. ammoniagenes R2 and the mutant E. coli proteins D84N, S114D, E115A, H118A, and E238A have been determined and their hydrogen bonding and protonation states have been structurally assigned as far as possible. Significant alterations to the hydrogen-bonding patterns, protonation states, and hydration is observed for all mutant E. coli apo proteins as compared to wild-type apo R2. Further structural variations are revealed by the wild-type apo C. ammoniagenes R2 structure. The protonation and hydration effects seen in the carboxylate cluster appear to be due to two major factors: conservation of the overall charge of the site and the requirement of electrostatic shielding of clustered carboxylate residues. Very short hydrogen-bonding distances between some protonated carboxylate pairs are indicative of low-barrier hydrogen bonding.  相似文献   

15.
16.
The reaction mechanism of bovine kidney biliverdin reductase   总被引:1,自引:0,他引:1  
The steady-state kinetics of biliverdin reductase can be studied in detail at pH 9 as under these conditions the Km for biliverdin is high enough to obtain reliable measurements of the initial rate in the absence of any biliverdin binding proteins. The initial rate kinetics and the product-inhibition studies are consistent with an ordered sequential mechanism provided the biliverdin concentration was below 20 microM. Above this concentration significant flux occurs through a substrate inhibition pathway involving an enzyme-NAD(P)-biliverdin complex. Chloride is shown to cause a significant activation of the enzyme under certain conditions and this is shown to result from an inability of biliverdin to bind to an enzyme-NAD-chloride complex.  相似文献   

17.
18.
19.
The crystal structure of recombinant putidaredoxin reductase (Pdr), an FAD-containing NADH-dependent flavoprotein component of the cytochrome P450cam monooxygenase from Pseudomonas putida, has been determined to 1.90 A resolution. The protein has a fold similar to that of disulfide reductases and consists of the FAD-binding, NAD-binding, and C-terminal domains. Compared to homologous flavoenzymes, the reductase component of biphenyl dioxygenase (BphA4) and apoptosis-inducing factor, Pdr lacks one of the arginine residues that compensates partially for the negative charge on the pyrophosphate of FAD. This uncompensated negative charge is likely to decrease the electron-accepting ability of the flavin. The aromatic side-chain of the "gatekeeper" Tyr159 is in the "out" conformation and leaves the nicotinamide-binding site of Pdr completely open. The presence of electron density in the NAD-binding channel indicates that NAD originating from Escherichia coli is partially bound to Pdr. A structural comparison of Pdr with homologous flavoproteins indicates that an open and accessible nicotinamide-binding site, the presence of an acidic residue in the middle part of the NAD-binding channel that binds the nicotinamide ribose, and multiple positively charged arginine residues surrounding the entrance of the NAD-binding channel are the special structural elements that assist tighter and more specific binding of the oxidized pyridine nucleotide by the BphA4-like flavoproteins. The crystallographic model of Pdr explains differences in the electron transfer mechanism in the Pdr-putidaredoxin redox couple and their mammalian counterparts, adrenodoxin reductase and adrenodoxin.  相似文献   

20.
The 2,2,6,6-tetramethylpiperidine-1-oxy radial (TEMPO)-mediated oxidation was applied to aqueous slurries of cotton linters. The water-insoluble fibrous fractions thus obtained in the yields of more than 78% were characterized by solid-state 13C-NMR, X-ray diffraction and scanning electron microscopic analyses for evaluation of distribution of carboxylate groups formed in the TEMPO-oxidized celluloses. The patterns of solid-state 13C-NMR spectra revealed that the oxidation occurred at the C6 primary hydroxyl groups of cellulose. X-ray diffraction and scanning electron microscopic analyses showed that such C6 oxidation took place at the surfaces of cellulose I crystallites without any oxidation at the C6 of inside cellulose I crystallites. Thus, carboxylate and aldehyde groups introduced into the TEMPO-oxidized celluloses are densely present on the surfaces of cellulose I crystallites. In addition, the obtained results revealed that the shoulder signal due to non-crystalline C6 carbons at about 63 ppm in solid-state 13C-NMR spectra of native celluloses is ascribed to those of surfaces of cellulose I crystallites or those of cellulose microfibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号