首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Luo M  Liu J  Lee RD  Scully BT  Guo B 《植物学报(英文版)》2010,52(12):1059-1074
Preharvest aflatoxin contamination of grain grown on the US southeastern Coast Plain is provoked and aggravated by abiotic stress. The primary abiotic stress is drought along with high temperatures. The objectives of the present study were to monitor gene expression in developing kernels in response to drought stress and to identify drought-responsive genes for possible use in germplasm assessment. The maize breeding line Tex6 was used, and gene expression profiles were analyzed in developing kernels under drought stress verses well-watered conditions at the stages of 25, 30, 35, 40, 45 d after pollination (DAP) using the 70 mer maize oligo-arrays. A total of 9 573 positive array spots were detected with unique gene IDs, and 7 988 were common in both stressed and well-watered samples. Expression patterns of some genes in several stress response-associated pathways, including abscisic acid, jasmonic acid and phenylalanine ammonia-lyase, were examined, and these specific genes were responsive to drought stress positively. Real-time quantitative polymerase chain reaction validated microarray expression data. The comparison between Tex6 and B73 revealed that there were significant differences in specific gene expression, patterns and levels. Several defense-related genes had been downregulated, even though some defense-related or drought responsive genes were upregulated at the later stages.  相似文献   

4.
Jung Y  Park J  Choi Y  Yang JG  Kim D  Kim BG  Roh K  Lee DH  Auh CK  Lee S 《植物学报(英文版)》2010,52(10):891-903
Arabis stelleri var.japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana.Using an A.thaliana microarray chip,we determined changes in the expression of approximately 2 800genes between A.stelleri plants treated with 0.2 M mannitol versus mock-treated plants.The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system,stimulus response,stress response,chemical stimulus response,and defense response.The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A.stelleri var.japonica seedlings treated with 0.2 M mannitol,0.2 M sorbitol,and 0.2 M NaCl.The expression of Δ1-pyrroline-5-carboxylate synthetase was not affected by NaCl stress but was similarly induced by mannitol and sorbitol.The proline dehydrogenase gene,which is known to be repressed by dehydration stress and induced by free L-proline,was induced at an early stage by mannitol treatment,but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCl.The level of free L-proline accumulation increased progressively in response to treatments with mannitol,sorbitol,and NaCl.Mannitol induced L-proline accumulation more rapidly than NaCl or sorbitol.These findings demonstrate that the osmotic tolerance of the novel halophyte,Arabis stelleri,is associated with the accumulation of L-proline.  相似文献   

5.
Yu Y  Zhang H  Li W  Mu C  Zhang F  Wang L  Meng Z 《Gene》2012,498(2):212-222
The FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, and have been implicated in a wide spectrum of biological processes, including protein folding, hormone signaling, plant growth, and stress responses. Genome-wide structural and evolutionary analyses of the entire FKBP gene family have been conducted in Arabidopsis and rice. In the present study, a genome-wide analysis was performed to identify all maize FKBP genes. The availability of complete maize genome sequences allowed for the identification of 24 FKBP genes. Chromosomal locations in the maize genome were determined and the protein domain and motif organization of ZmFKBPs analyzed. The phylogenetic relationships between maize FKBPs were also assessed. The expression profiles of ZmFKBP genes were measured under different environmental conditions and revealed distinct ZmFKBP gene expression patterns under heat, cold, salt, and drought stress. These data not only contribute to a better understanding of the complex regulation of the maize FKBP gene family, but also provide evidence supporting the role of FKBPs in multiple signaling pathways involved in stress responses. This investigation may provide valuable information for further research on stress tolerance in plants and potential strategies for enhancing maize survival under stressful conditions.  相似文献   

6.
7.
8.
9.
10.
Maize is a cereal crop that is grown widely throughout the world in a range of agro-ecological environments. Trehalose is a nonreducing disaccharide of glucose that has been associated with tolerance to different stress conditions, including salt and drought. Bioinformatic analysis of genes involved in trehalose biosynthesis and degradation in maize has not been reported to date. Through systematic analysis, 1 degradation-related and 36 trehalose biosynthesis-related genes were identified. The conserved domains and phylogenetic relationships among the deduced maize proteins and their homologs, isolated from other plant species such as Arabidopsis and rice, were revealed. Using a comprehensive approach, the intron/exon structures and expression patterns of all identified genes and their responses to salt stress, jasmonic acid, and abscisic acid treatment were analyzed. Microarray data demonstrated that some of the genes show differential, organ-specific expression patterns in the 60 different developmental stages of maize. It was discovered that some of the key enzymes such as hexokinase, trehalose-6-phosphate synthase, and trehalose-6-phosphate phosphatase are encoded by multiple gene members with different expression patterns. The results highlight the complexity of trehalose metabolism and provide useful information for improving maize stress tolerance through genetic engineering.  相似文献   

11.
12.
13.
Glycinebetaine plays an important role in the protection mechanism of many plants under various stress conditions. In this study, genetically engineered maize plants with an enhanced ability to synthesise glycinebetaine (GB) were produced by introducing two genes, glycine sarcosine methyltransferase gene (ApGSMT2) and dimethylglycine methyltransferase gene (ApDMT2), from the bacterium Aphanothece halophytica. Southern blotting and RT-PCR analysis demonstrated that the two genes were integrated into the maize genome and expressed. The increased expression levels of ApGSMT2 and ApDMT2 under drought conditions facilitated GB accumulation in the leaves of transgenic maize plants and conferred improved drought tolerance. Under drought conditions, the transgenic plants showed an increased accumulation of sugars and free amino acids, greater chlorophyll content, a higher photosynthesis rate and biomass, and lower malondialdehyde and electrolyte leakage compared to the wild-type; these results suggest that GB provides vital protection against drought stress. Under normal conditions, the transgenic plants did not show decreased biomass and productivity, which indicated that the co-expression of ApGSMT2 and ApDMT2 in maize plays an important role in its tolerance to drought stress and does not lead to detrimental effects. It was concluded that the co-expression of ApGSMT2 and ApDMT2 in maize is an effective approach to enhancing abiotic stress tolerance in maize breeding programmes.  相似文献   

14.
15.
16.
Adenine methylation in zein genes   总被引:1,自引:0,他引:1  
This paper reports the novel finding of adenine methylation in higher plants. Comparison of restriction patterns of genomic maize DNA digested with enzymes MboI and Sau3A enabled us to detect the existence of adenine methylation in zein genes. Adenine methylation within or around zein genes turned out to be similar in endosperm (where zeins are actively synthesized) and in seedling tissue (where zein genes are not expressed). Furthermore, adenine methylation patterns were found to be similar both in wild-type and opaque-2 mutant plants. These lines of evidence suggest that adenine methylation is unrelated to the regulation of gene expression.  相似文献   

17.
王雷  种康 《植物学报》2022,57(5):555-558
作物育种的目标是找到产量和抗性的最佳平衡点,其中涉及“鱼和熊掌”二者兼得的选择策略。哪些逆境负调控位点影响产量性状,以及如何调控等是突破育种瓶颈的重要科学问题。近百年来,高产玉米(Zeamays)育种使玉米单产不断提高,同时现代玉米品种对干旱的敏感性也呈现出增强趋势,故而存在高产稳产的潜在风险。可对于这一现象背后确切的遗传机制却知之甚少,从而限制了既高产又高抗玉米新品种的培育。玉米的非生物胁迫抗性与产量性状均为多基因控制的复杂数量性状,涉及全基因组范围内大量基因的表达与调控。玉米基因组内存在大量的小RNA (sRNA),其对基因表达起精细调控作用,但人们对sRNA调控作物环境胁迫应答与产量性状机制的理解仍然有限。近日,华中农业大学代明球课题组与李林和李峰两个课题组合作,基于对338份玉米关联群体在不同环境下的sRNA表达组分析,鉴定到大量干旱应答的sRNA,以及调控这些sRNA表达的遗传位点(eQTL);并克隆了8号染色体上1个干旱特异性eQTL热点DRESH8。生物信息学分析显示, DRESH8是1个由转座子组成的长度约为21.4 kb的反向重复序列(TE-IR)。DRESH8通过产...  相似文献   

18.
19.
Gene expression levels were quantified after ultraviolet radiation treatment in the parental inbred lines of the maize mapping (IBM) population. This allows us to take advantage of natural variation between maize lines to analyse variation in gene expression. Using a statistically sound split‐plot experiment cDNAs were identified with differently regulated expression in B73 and Mo17 after UV treatment. Fewer genes were down‐regulated in B73; this global strain difference in the number of genes up‐ and down‐regulated does not appear to reflect general hybridization differences. Contrary to our expectation, there was a higher proportion of highly expressed genes (based on EST recovery) that were differently expressed by UV between lines. Genes affected by UV (but not significantly different between B73 and Mo17) include gene types proposed to function in UV acclimation and adaptation based on experiments in other species or other experiments in maize. Several new functional classes were identified as UV‐regulated, including genes encoding proteins that modulate chromatin structure.  相似文献   

20.
The muc genes of pKM101 are induced by DNA damage   总被引:20,自引:11,他引:9       下载免费PDF全文
A gene fusion was constructed in vitro that resulted in the synthesis of a hybrid protein consisting of the amino-terminal segment of the MucB protein of the mutagenesis-enhancing plasmid pKM101 joined to an enzymatically active carboxy-terminal segment of the beta-galactosidase protein. In strains bearing this fusion, beta-galactosidase activity was induced by UV radiation and other DNA-damaging agents. A genetic analysis of the regulation of expression of the phi (mucB'-lacZ') fusion was consistent with the LexA protein acting as the direct repressor of the mucB gene. Examination of the expression of the mucA and phi (mucB'-lacZ') gene products in maxicells in the presence and absence of a high-copy-number plasmid carrying the lexA+ gene demonstrated that lexA regulated both the mucA and mucB genes, thus supporting our conclusion that the two genes are organized in an operon with the mucA gene transcribed first. An analysis of the effects of the recA430(lexB30) mutation on muc expression led to the discovery of the differential ability of the recA430 gene product to induce expression of a dinB::Mu d1(Ap lac) fusion located on the chromosome and the same phi (dinB'-lacZ+) fusion cloned into plasmid pBR322. Models to account for the role of the recA430 allele on the expression of damage-inducible genes and on mutagenesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号