首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strain-specific assay was developed for the detection of viable Lactobacillus on cattle feed. The DNA sequences of the 16S rRNA gene and four different 16S/23S rRNA intergenic spacer regions (ISR) from Lactobacillus sp. HOFG1 were determined. Based on these sequences, a strain-specific primer was designed for the amplification of one of the ISRs. When combined with a Lactobacillus group primer, the polymerase chain reaction (PCR) assay detected only Lactobacillus sp. HOFG1 and not other closely related L. animalis or L. murinus strains. The feed assay uses a combination of enrichment culturing and PCR to detect and enumerate viable Lactobacillus sp. HOFG1 after its application onto cattle feed. The high degree of primer specificity and use of selective culturing allows for the detection of viable Lactobacillus which is useful in tracking bacteria applied to complex feed mixtures that contain a high background of endogenous bacteria.  相似文献   

2.
A theoretical framework for prediction of the dynamic evolution of chemical species in DNA amplification reactions, for any specified sequence and operating conditions, is reported. Using the polymerase chain reaction (PCR) as an example, we developed a sequence- and temperature-dependent kinetic model for DNA amplification using first-principles biophysical modeling of DNA hybridization and polymerization. We compare this kinetic model with prior PCR models and discuss the features of our model that are essential for quantitative prediction of DNA amplification efficiency for arbitrary sequences and operating conditions. Using this model, the kinetics of PCR is analyzed. The ability of the model to distinguish between the dynamic evolution of distinct DNA sequences in DNA amplification reactions is demonstrated. The kinetic model is solved for a typical PCR temperature protocol to motivate the need for optimization of the dynamic operating conditions of DNA amplification reactions. It is shown that amplification efficiency is affected by dynamic processes that are not accurately represented in the simplified models of DNA amplification that form the basis of conventional temperature cycling protocols. Based on this analysis, a modified temperature protocol that improves PCR efficiency is suggested. Use of this sequence-dependent kinetic model in a control theoretic framework to determine the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is discussed.  相似文献   

3.
A theoretical framework for prediction of the dynamic evolution of chemical species in DNA amplification reactions, for any specified sequence and operating conditions, is reported. Using the polymerase chain reaction (PCR) as an example, we developed a sequence- and temperature-dependent kinetic model for DNA amplification using first-principles biophysical modeling of DNA hybridization and polymerization. We compare this kinetic model with prior PCR models and discuss the features of our model that are essential for quantitative prediction of DNA amplification efficiency for arbitrary sequences and operating conditions. Using this model, the kinetics of PCR is analyzed. The ability of the model to distinguish between the dynamic evolution of distinct DNA sequences in DNA amplification reactions is demonstrated. The kinetic model is solved for a typical PCR temperature protocol to motivate the need for optimization of the dynamic operating conditions of DNA amplification reactions. It is shown that amplification efficiency is affected by dynamic processes that are not accurately represented in the simplified models of DNA amplification that form the basis of conventional temperature cycling protocols. Based on this analysis, a modified temperature protocol that improves PCR efficiency is suggested. Use of this sequence-dependent kinetic model in a control theoretic framework to determine the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is discussed.  相似文献   

4.
The ability to perform DNA amplification on a microfluidic device is very appealing. In this study, a compact continuous-flow polymerase chain reaction (PCR) microfluidics was developed for rapid analysis of genetically modified organisms (GMOs) in genetically modified soybeans. The device consists of three pieces of copper and a transparent polytetrafluoroethylene capillary tube embedded in the spiral channel fabricated on the copper. On this device, the P35S and Tnos sequences were successfully amplified within 9 min, and the limit of detection of the DNA sample was estimated to be 0.005 ng μl−1. Furthermore, a duplex continuous-flow PCR was also reported for the detection of the P35S and Tnos sequences in GMOs simultaneously. This method was coupled with the intercalating dye SYBR Green I and the melting curve analysis of the amplified products. Using this method, temperature differences were identified by the specific melting temperature values of two sequences, and the limit of detection of the DNA sample was assessed to be 0.01 ng μl−1. Therefore, our results demonstrated that the continuous-flow PCR assay could discriminate the GMOs in a cost-saving and less time-consuming way.  相似文献   

5.
Locked nucleic acid (LNA) is a modified DNA with increased binding affinityfor complementary DNA sequences. Our strategy was to use this property of LNA to inhibit undesired PCR amplification (e.g.,from contaminating genomic DNA) in a cDNA-based assay. By placing a short complementary LNA sequence in intronic DNA, the aim was to inhibit the amplification of genomic DNA without affecting the amplification of reverse-transcribed spliced mRNA. LNA was designed to bind within intron 5 in the x-box binding protein 1 (XBP1) gene. An irrelevant LNA oligonucleotide served as a negative control. In both PCR and real-time PCR, the addition of LNA showed blocking of the amplification of genomic XBP1 but not cDNA XBP1. To test the effect of melting temperature (Tm) on the LNA, we investigated the number of LNA nucleotides that could be replaced with DNA nucleotides and still retain the blocking activity. More than three DNA nucleotides reduced the LNA inhibition ability. The sequence specificity of the LNA was tested by investigating the number of LNA nucleotide mismatches permitted. The introduction of one mismatch maintained the inhibition of genomic amplification whereas two mismatches reduced the amplification. Our results show that LNA may be used to enhance the specificity of PCR by eliminating unwanted PCR products.  相似文献   

6.
Isolated soil DNA from an oak-hornbeam forest close to Cologne, Germany, was suitable for PCR amplification of gene segments coding for the 16S rRNA and nitrogenase reductase (NifH), nitrous oxide reductase (NosZ), cytochrome cd(1)-containing nitrite reductase (NirS), and Cu-containing nitrite reductase (NirK) of denitrification. For each gene segment, diverse PCR products were characterized by cloning and sequencing. None of the 16S rRNA gene sequences was identical to any deposited in the data banks, and therefore each of them belonged to a noncharacterized bacterium. In contrast, the analyzed clones of nifH gave only a few different sequences, which occurred many times, indicating a low level of species richness in the N2-fixing bacterial population in this soil. Identical nifH sequences were also detected in PCR amplification products of DNA of a soil approximately 600 km distant from the Cologne area. Whereas biodiversity was high in the case of nosZ, only a few different sequences were obtained with nirK. With respect to nirS, cloning and sequencing of the PCR products revealed that many false gene segments had been amplified with DNA from soil but not from cultured bacteria. With the 16S rRNA gene data, many sequences of uncultured bacteria belonging to the Acidobacterium phylum and actinomycetes showed up in the PCR products when isolated DNA was used as the template, whereas sequences obtained for nifH and for the denitrification genes were closely related to those of the proteobacteria. Although in such an experimental approach one has to cope with the enormous biodiversity in soils and only a few PCR products can be selected at random, the data suggest that denitrification and N2 fixation are not genetic traits of most of the uncultured bacteria.  相似文献   

7.
The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with phi29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 x 10(4)-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information.  相似文献   

8.
9.
N D Stow 《The EMBO journal》1982,1(7):863-867
An assay has been developed and used to locate an origin of DNA replication on the herpes simplex virus type 1 (HSV-1) genome. Baby hamster kidney cells were transfected with circular plasmid molecules containing cloned copies of HSV-1 DNA fragments, and helper functions were provided by superinfection with wild-type HSV-1. The presence of an HSV-1 origin of replication within a plasmid enabled amplification of the vector DNA sequences, which was detected by the incorporation of [32P]orthophosphate. By screening various HSV-1 DNA fragments it was possible to identify a 995-bp fragment that maps entirely within the reiterated sequences flanking the short unique region of the viral genome and contains all the cis-acting signals necessary to function as an origin of viral DNA replication. The products of plasmid replication were shown to be high mol. wt. DNA molecules consisting of tandem duplications of the complete plasmid, suggesting that replication was occurring by a rolling-circle mechanism.  相似文献   

10.
G C Wang  Y Wang 《Applied microbiology》1997,63(12):4645-4650
PCR is routinely used in amplification and cloning of rRNA genes from environmental DNA samples for studies of microbial community structure and identification of novel organisms. There have been concerns about generation of chimeric sequences as a consequence of PCR coamplification of highly conserved genes, because such sequences may lead to reports of nonexistent organisms. To quantify the frequency of chimeric molecule formation, mixed genomic DNAs from eight actinomycete species whose 16S rRNA sequences had been determined were used for PCR coamplification of 16S rRNA genes. A large number of cloned 16S ribosomal DNAs were examined by sequence analysis, and chimeric molecules were identified by multiple-sequence alignment with reference species. Here, we report that the level of occurrence of chimeric sequences after 30 cycles of PCR amplification was 32%. We also show that PCR-induced chimeras were formed between different rRNA gene copies from the same organism. Because of the wide use of PCR for direct isolation of 16S rRNA sequences from environmental DNA to assess microbial diversity, the extent of chimeric molecule formation deserves serious attention.  相似文献   

11.
The genome of equine herpesvirus 1 (EHV-1) defective interfering (DI) particle DNA originates from discrete regions within the standard (STD) EHV-1 genome: the left terminus (0.0 to 0.04 map units) and the inverted repeats (0.78 to 0.79 and 0.83 to 0.87 map units of the internal inverted repeat; 0.91 to 0.95 and 0.99 to 1.00 map units of the terminal inverted repeat). Since DI DNA must contain cis-acting DNA sequences, such as replication origins, which cannot be supplied in trans by the STD EHV-1 virus, regions of the EHV-1 genome shown to be in DI DNA were assayed for the presence of a viral origin of DNA replication. Specifically, STD EHV-1 DNA fragments encompassing the genomic regions present in DI particle DNA were inserted into the vector pAT153, and individual clones were tested by transfection assays for the ability to support the amplification and replication of plasmid DNA in EHV-1-infected cells. The Sma-1 subfragment of the internal inverted repeat sequence (0.83 to 0.85 map units) was shown to contain origin of replication activity. Subcloning and BAL 31 deletion analysis of the 2.35-kilobase-pair (kbp) Sma-1 fragment delineated a 200-bp fragment that contained origin activity. The origin activities of all EHV-1 clones which were positive by the transfection assay were confirmed by methylation analysis by using the methylation-sensitive restriction enzymes DpnI and MboI. DNA sequencing of the 200-bp fragment which contained an EHV-1 origin of replication indicated that this region has significant homology to previously characterized origins of replication of human herpesviruses. Furthermore, comparison of known origin sequences demonstrated that a 9-bp sequence, CGTTCGCAC, which is conserved among all origins of replication of human lytic herpesviruses and which is contained within the 18-bp region in herpes simplex virus type 1 origins shown by others to be protected by an origin-binding protein (P. Elias, M. E. O'Donnell, E. S. Mocarski, and I. R. Lehman, Proc. Natl. Acad. Sci. USA 83:6322-6326) is also conserved across species in the EHV-1 origin of replication.  相似文献   

12.
DNA covalently bound to an uncharged nylon membrane was used for consecutive amplifications of several different genes by PCR. Successful PCR amplifications were obtained for membrane-bound genomic and plasmid DNA. Membrane-bound genomic DNA templates were re-used at least 15 times for PCR with specific amplification of the desired gene each time. PCR amplifications of specific sequences of p53, p16, CYP1A1, CYP2D6, GSTM1 and GSTM3 were performed independently on the same strips of uncharged nylon membrane containing genomic DNA. PCR products were subjected to restriction fragment length polymorphism analysis, single-strand conformational polymorphism analysis and/or dideoxy sequencing to confirm PCR-amplified gene sequences. We found that PCR fragments obtained by amplification from bound genomic DNA as template were identical in sequence to those of PCR products obtained from free genomic DNA in solution. PCR was performed using as little as 5 ng genomic or 4 fg plasmid DNA bound to membrane. These results suggest that DNA covalently bound to membrane can be re-used for sample-specific PCR amplifications, providing a potentially unlimited source of DNA for PCR.  相似文献   

13.
Attomole (10(-18)mol) levels of RNA and DNA isolated from beer spoilage bacterial cells Lactobacillus brevis have been detected by the electrochemical sandwich DNA hybridization assay exploiting enzymatic activity of lipase. DNA sequences specific exclusively to L. brevis DNA and RNA were selected and used for probe and target DNA design. The assay employs magnetic beads (MB) modified with a capture DNA sequence and a reporter DNA probe labeled with the enzyme, both made to be highly specific for L. brevis DNA. Lipase-labeled DNAs captured on MBs in the sandwich assay were collected on gold electrodes modified with a ferrocene (Fc)-terminated SAM formed by aliphatic esters. Lipase hydrolysis of the ester bond released a fraction of the Fc redox active groups from the electrode surface, decreasing the electrochemical signal from the surface-confined Fc. The assay, shown to be efficient for analysis of short synthetic DNA sequences, was ineffective with genomic double stranded bacterial DNA, but it allowed down to 16 amole detection of 1563 nts long RNA, isolated from bacterial ribosomes without the need for PCR amplification, and single DNA strands produced from ribosomal RNA. No interference from E. coli RNA was registered. The assay allowed analysis of 400 L. brevis cells isolated from 1L of beer, which fits the "alarm signal" range (from 1 to 100 cells per 100mL).  相似文献   

14.
Amplifying bacterial DNA by PCR from human biopsy specimens has sometimes proved to be difficult, mainly due to the low amount of bacterial DNA present. Therefore, nested or semi-nested 16S rDNA PCR amplification has been the method of choice. In this study, we evaluate the potential use of whole genome amplification of total DNA isolated from human colon and rectum biopsy specimens, followed by 16S rDNA PCR amplification of multiple displacement amplified (MDA)-DNA. Subsequently, a H. pylori-specific 16S rDNA variable V3 region PCR assay was applied directly on MDA-DNA and, combined with pyrosequencing analysis; the presence of H. pylori in some biopsies from colon in patients with microscopic colitis was confirmed. Furthermore, temporal temperature gradient gel electrophoresis (TTGE) of 16S rDNA amplicons using primers flanking variable regions V3, V4, and V9, was used to establish bacterial profiles from individual biopsies. A variation of the bacterial profiles in the colonic mucosa in microscopic colitis and in normal rectal mucosa was observed. In conclusion we find the MDA technique to be a useful method to overcome the problem of insufficient bacterial DNA in human biopsy specimens.  相似文献   

15.
16.
As a first step toward building a comprehensive microarray, two low density DNA microarrays were constructed and evaluated for the accurate detection of wastewater pathogens. The first one involved the direct hybridization of wastewater microbial genomic DNA to the functional gene probes while the second involved PCR amplification of 23S ribosomal DNA. The genomic DNA microarray employed 10 functional genes as detection targets. Sensitivity of the microarray was determined to be approximately 1.0 microg of Esherichia coli genomic DNA, or 2 x 10(8) copies of the target gene, and only E. coli DNA was detected with the microarray assay using municipal raw sewage. Sensitivity of the microarray was enhanced approximately by 6 orders of magnitude when the target 23S rRNA gene sequences were PCR amplified with a novel universal primer set and allowed hybridization to 24 species-specific oligonucleotide probes. The minimum detection limit was estimated to be about 100 fg of E. coli genomic DNA or 1.4 x 10(2) copies of the 23S rRNA gene. The PCR amplified DNA microarray successfully detected multiple bacterial pathogens in wastewater. As a parallel study to verify efficiency of the DNA microarray, a real-time quantitative PCR assay was also developed based on the fluorescent TaqMan probes (Applied Biosystems).  相似文献   

17.
In order to detect and quantify Septoria tritici infection levels in wheat leaves, a polymerase chain reaction (PCR) assay was developed using the β-tubulin gene as target. Specific PCR primers were designed by aligning and comparing β-tubulin sequences from other fungi. The final primer set was selected after being tested against several fungi, and against S. tritici -infected and uninfected wheat leaves from different localities. A single DNA fragment (496 bp) was amplified from S. tritici, whereas no products were generated from DNA of the host plant or other micro-organisms associated with wheat leaves. Using agarose gel analysis, approximately 2 pg S. tritici genomic DNA could be detected in each assay. However, for rapid quantification of PCR-amplified products, a fluorometric microtitre plate-formatted PicoGreen assay was used; this could detect as little as 10 pg S. tritici DNA in the presence of 200 ng wheat leaf DNA. The PCR/PicoGreen assay was applied successfully to study the colonization, infection and subsequent disease development of S. tritici on wheat, both under controlled conditions in the glasshouse and in the field.  相似文献   

18.
Summary The polymerase chain reaction (PCR) method was used to detect mycoplasma contamination in a panel of 42 continuous cell lines. According to the microbiological cultivation assay on agar, 29 cell lines were chronically infected and 13 cell lines were negative. Sets of outer and inner primers (nested double-step PCR) were applied which anneal to DNA sequences coding for conserved regions of the 16S rRNA. These oligonucleotides allow for the amplification of DNA regions found in at least 25 mycoplasma species (including the ones most commonly found in cell cultures), but do not cross-hybridize with DNA from eukaryotic cells. Mycoplasma-positive cell lines showed distinctive bands in ethidium bromide-stained gels, both after the first round of amplification as well as after the second PCR; all agar-negative cell lines were also unambiguously negative in the PCR assay. Thus, neither false-positive nor false-negative results occurred. Provided that the proper PCR working conditions are scrupulously observed, the PCR amplification has several outstanding advantages: high sensitivity, specificity, reliability, objectivity, speed, and simplicity.  相似文献   

19.
We describe the simultaneous amplification of different segments of foreign DNA in transgenic plants using the polymerase chain reaction (PCR). We used PCR to simultaneously amplify different regions of transformed T-DNA in order to assay the integrity of transformed constructions in primary tomato transformants. We also used simultaneous PCR amplification to examine the segregation of transformed sequences in progeny of primary transformants. A tomato transformant containing the maize transposable elementAc was crossed to transformants containing the non-autonomousDs1 element flanked by maizeAdh1 sequences. We then ran PCR reactions on DNA from F1 progeny using two sets of primers, one set homologous toAc and one set homologous toAdh1 sequences on either side ofDs1. Because theAc andAdh1 primers resulted in amplification of fragments of different sizes, it was possible to monitor the inheritance ofAc and theDs1 containingAdh1 genein a single reaction. Additionally, it was possible to identify F1 plants in whichDs1 had excised by the amplification of a fragment the size predicted for an empty donor site. In order to run these reactions, we have constructed a simple and inexpensive thermal cycler which, when used in conjunction with the rapid miniscreen plant DNA isolation procedure described, allows the processing of a large number of samples in a single day. Therefore, we have shown that PCR can be a useful tool to monitor the integrity of foreign genes in transgenic plants, to follow the segregation of foreign DNA in progeny, and to assay for the excision of transposable elements.  相似文献   

20.
In this study, we report the isolation and characterization of a candidate Trypanosoma rangeli small nucleolar RNA (snoRNA) gene, and the development of a PCR assay for detection of the parasite based on its nucleotide sequence. This gene, isolated from a T. rangeli genomic sub-library, was named snoRNA-cl1 and is encoded by a multi-copy gene of 801bp in length. Computer sequence analysis of snoRNA-cl1 showed the presence of two sequence motifs, box C and box D, as well as of two long stretches that perfectly complement the universal core region of the mature rRNA 28S, suggesting that cl1 encodes for a Box C/D snoRNA from the parasite. Hybridization analysis using cl1 as probe, showed a weak hybridization signal with Trypanosoma cruzi DNA, demonstrating the existence of differences in this locus between these two species. Two oligonucleotide primers from this gene, which specifically amplified a 620-bp fragment in KP1 (+) and KP1 (-) strains of T. rangeli, were used in a PCR assay. The amplification allowed the detection of 1pg of DNA in the presence of heterologous DNA and no amplification was observed with different T. cruzi strains (groups I and II). In addition, the PCR assay reported here is able to detect T. rangeli in the presence of T. cruzi DNA, and is useful for detection of the parasite in samples from infected vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号