首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rat insulin-like growth factor II (IGF-II) receptor develops transmembrane signaling functions by directly coupling to a guanine nucleotide-binding protein (G protein) having a 40-kDa alpha subunit, Gi-2, whereas recent studies have indicated that the IGF-II receptor is a molecule identical to the cation-independent mannose 6-phosphate receptor (CI-MPR), a receptor implicated in lysosomal enzyme sorting. In this study, by using vesicles reconstituted with the clonal human CI-MPR and G proteins, we indicated that the CI-MPR could stimulate guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding and GTPase activities of Gi proteins in response to IGF-II. The stimulatory effect of IGF-II on Gi-2 depended on the reconstituted amount of the CI-MPR; it could not be found in vesicles reconstituted with Gi-2 alone; and it was also observed on Gi-1 reconstituted with the CI-MPR in phospholipid vesicles. Of interest, such stimulatory effect was not reproduced by Man-6-P in CI-MPR vesicles reconstituted with either G protein. Furthermore, the affinity for Man-6-P-mediated beta-glucuronidase binding to several kinds of native cell membranes was not reduced by 100 microM GTP gamma S. Instead, however, Man-6-P dose-dependently inhibited IGF-II-induced Gi-2 activation with an IC50 of 6 microM in vesicles reconstituted with the CI-MPR and Gi-2. The action of 100 nM IGF-II was completely abolished by 1 mM Man-6-P. Such an inhibitory effect of Man-6-P was reproduced by 4000 times lower concentrations of beta-glucuronidase or similar concentrations of fructose 1-phosphate, but not by mannose or glucose 6-phosphate. These results indicate that the human CI-MPR has two distinct signaling functions that positively or negatively regulate the activity of Gi-2 in response to the binding of IGF-II or Man-6-P.  相似文献   

2.
The GTP binding regulatory protein (Ni involved in adenylate cyclase inhibition was purified from rat brain and reconstituted, together with muscarinic cholinergic receptors purified from porcine brain, into phospholipid vesicles. Guanosine 5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding and GTP hydrolyzing activities of reconstituted Ni were stimulated by the addition of a muscarinic agonist, carbachol. The effect of carbachol was to increase the Vmax values of these activities, but the Km values were also increased slightly in most cases. Carbachol bound to vesicles with the same order of magnitude of Km as that for stimulation of GTPase. The affinity of this binding was reduced by GTP gamma S, indicating that the high-affinity receptor-Ni complex was formed in a GTP-dependent manner in reconstituted vesicles. Incubation of Ni with NAD and islet-activating protein (IAP), pertussis toxin, caused ADP-ribosylation of the alpha-subunit of Ni. The criteria for the receptor-Ni interaction, i.e. carbachol stimulation of the activities of Ni and the GTP gamma S effect on carbachol binding, were no longer observed, when this IAP-treated Ni, instead of the nontreated Ni, was reconstituted into vesicles, though there was no difference between IAP-treated and nontreated Ni in their basal activities observable without carbachol. No, the protein with a character very similar to Ni in rat brain, was also coupled to muscarinic receptors when they were reconstituted into vesicles under the same conditions. Thus, GTP-binding proteins serving as the substrate of IAP-catalyzed ADP-ribosylation are capable of interaction functionally with muscarinic receptors in phospholipid vesicles.  相似文献   

3.
We previously reported that insulin-like growth factor-II (IGF-II) stimulates both calcium influx and DNA synthesis by acting on the cell surface IGF-II receptor (IGF-IIR) in a manner sensitive to pertussis toxin, and recently demonstrated that IGF-II binding to the IGF-IIR gives rise to functional changes of purified Gi-2, a GTP-binding protein (G protein) in phospholipid vesicles as well as in broken cell membranes. On the other hand, a variety of evidence indicates that the IGF-IIR binds mannose 6-phosphate (man6P) with high affinity probably at a receptor extracellular region different from the IGF-II-binding site. In the present study, we examined whether man6P stimulation of the IGF-IIR evokes the activation of Gi-2 in phospholipid vesicles and in native cell membranes. In vesicles reconstituted with purified rat IGF-IIR and bovine Gi-2, man6P did not stimulate GDP dissociation from Gi-2 even in concentrations up to 10 mM, while IGF-II dose-dependently facilitated GDP release from Gi-2 with an EC50 of 6 nM. The stimulatory effect of IGF-II was not observed in vesicles reconstituted with Gi-2 alone. In addition, also in a native environment of cell membranes, man6P did not affect an endogenous 40-kDa protein or exogenously added purified Gi-2 as assessed with reduction of the pertussis toxin-catalyzed ADP-ribosylation. These results indicate that the IGF-IIR does not activate Gi-like proteins upon man6P binding in phospholipid vesicles and in native cellular membranes, whereas the receptor activates Gi-like proteins upon IGF-II binding in both environments. Thus, we postulate that the IGF-IIR dissimilarly responds to the two structurally unrelated ligands, IGF-II and man6P, in the linkage function with G proteins.  相似文献   

4.
M Tohkin  T Iiri  M Ui  T Katada 《FEBS letters》1989,255(1):187-190
Human promyelocytic leukemic (HL-60) cells were induced to differentiate into neutrophil- or macrophage-like cells by incubation of the cells with retinoic acid, dibutyryl cyclic AMP (Bt2cAMP) or phorbol 12-myristate 13-acetate (PMA). Differentiation was determined by an increase in the percentage of morphologically mature cells. The retinoic acid-induced differentiation of HL-60 cells was, but the Bt2cAMP- or PMA-induced one was not, inhibited by prior exposure of the cells to islet-activating protein (IAP), pertussis toxin. The IAP-induced inhibition was correlated with the toxin-catalyzed ADP-ribosylation of a membrane GTP-binding protein with a molecular mass of 40 kDa. Thus, the IAP-substrate GTP-binding protein appears to be involved in the retinoic acid-induced differentiation of HL-60 cells.  相似文献   

5.
Islet-activating protein (IAP; pertussis toxin) was employed to test the hypothesis that IAP-sensitive GTP-binding regulatory proteins (G proteins) are coupled with alpha 1-adrenergic receptor in rat liver plasma membranes. The high-affinity state of the binding of alpha 2-adrenergic agonist, which is known to be coupled with IAP-sensitive G protein, was abolished in IAP-treated plasma membranes. IAP treatment of plasma membranes could also diminish the high-affinity state of the alpha 1-adrenergic receptor for the agonist. Restoration of the high-affinity state of the alpha 1-adrenergic receptor for the agonist occurred on reconstitution of the bovine brain IAP-sensitive G proteins. The alpha 1-adrenergic receptor agonist stimulated inositol triphosphate (InsP3) production from [3H]inositol-labeled liver plasma membranes in a concentration-dependent manner. IAP treatment also decreased alpha 1-adrenergic-agonist-induced InsP3 production but not completely. From these results, we concluded that there is a possibility that both IAP-sensitive and IAP-insensitive G proteins were involved in alpha 1-adrenergic-receptor-stimulated phospholipase C activation in rat liver plasma membranes.  相似文献   

6.
The alpha-subunit of Gi-2, in addition to that of Gs (GTP-binding proteins involved in adenylate cyclase inhibition and stimulation, respectively) was ADP-ribosylated by cholera toxin in HL-60 cell membranes when a chemotactic receptor was stimulated by formyl-Met-Leu-Phe (fMLP), and the sites modified by cholera and pertussis toxins on the alpha-subunit of Gi-2 were different (Iiri, T., Tohkin, M., Morishima, N., Ohoka, Y., Ui, M., and Katada, T. (1989) J. Biol. Chem. 264, 21394-21400). In order to investigate how the functions of Gi-2 were modified by cholera toxin, the ADP-ribosylated and unmodified proteins were purified from HL-60 cell membranes that had been incubated in the presence and absence of cholera toxin, respectively. The modified Gi-2 displayed unique properties as follows. 1) The ADP-ribosylated alpha-subunit had a more acidic pI than the unmodified one, leading to a partial resolution of the modified Gir2 trimer from the unmodified protein by an anion column chromatography. 2) When the purified proteins were incubated with [gamma-32P]GTP, the radioactivity was more greatly retained in the modified Gi-2 than in the unmodified protein. 3) The actual catalytic rate (kcat) of GTP hydrolysis was, indeed, markedly inhibited by cholera toxin-induced modification. 4) There was an increase in the apparent affinity of Gi-2 for GDP by cholera toxin-induced modification. 5) The modified Gi-2 exhibited a low substrate activity for pertussis toxin-catalyzed ADP-ribosylation. 6) A high-affinity fMLP binding to HL-60 cell membranes was more effectively reconstituted with the ADP-ribosylated Gi-2 than with the unmodified protein. These results suggested that the agonist-fMLP receptor complex was effectively coupled with the ADP-ribosylated Gi-2, resulting in the GTP-bound form, and that the hydrolysis of GTP on the modified alpha-subunit was selectively attenuated. Thus, cholera toxin ADP-ribosylated Gi-2 appeared to be not only a less sensitive pertussis toxin substrate but also an efficient signal transducer between receptors and effectors.  相似文献   

7.
Pretreatment of striatal membranes with N-ethylmaleimide in the presence of a D1-specific agonist inactivated endogenous guanine nucleotide binding proteins (G proteins), but not D1 dopamine receptors, resulting in a loss of high-affinity agonist binding sites. Such D1 receptors were solubilized, mixed with exogenous G proteins from cells not containing D1 receptors, and reconstituted into phospholipid vesicles. These reconstituted receptors were able to couple to the exogenous G proteins, and the proportion of agonist high-affinity sites of the receptor (40-57%) was similar to levels obtained with naive receptors coupling to endogenous G proteins (40%) upon solubilization and reconstitution. These hybrid high-affinity sites were fully modulated by guanine nucleotides. Pretreatment of cells with pertussis toxin prior to extraction of G proteins resulted in a 50% decrease in the proportion of high-affinity sites; these sites remained sensitive to guanine nucleotides. When D1 receptors were reconstituted with extracts of cyc- cells, which lack stimulatory G proteins, the proportion of high-affinity sites was reduced to 31% of the total. Pertussis toxin treatment of the cyc- cells completely abolished the formation of high-affinity sites. These results demonstrate that D1-dopaminergic receptors are able to couple to not only stimulatory G proteins (Gs), but also to inhibitory G proteins (Gi).  相似文献   

8.
The effects of mastoparan and compound 48/80 on the activities of alpha beta gamma-trimeric GTP-binding proteins (G proteins) were studied with purified Go and Gi-1 which had been reconstituted into phospholipid vesicles. Pertussis toxin-catalyzed ADP-ribosylation of Go or Gi-1 was inhibited by mastoparan or compound 48/80, suggesting that the G proteins were dissociated into their constituent alpha- and beta gamma-subunits in the presence of these compounds. The steady-state rate of GTP hydrolysis catalyzed by Go or Gi-1 was stimulated by the two compounds. Both the stimulations were due to increases in the rate of the GDP-GTP exchange reaction occurring on the G proteins. However, the modes stimulation of the GTPase activity depended on the type of G protein used, and the stimulations caused by the two compounds were differently affected by pertussis toxin-catalyzed ADP-ribosylation of G proteins. Moreover, the mastoparan-induced stimulation of the GTPase activity was partially inhibited by compound 48/80. Thus, the two histamine secretagogues mastoparan and compound 48/80 appear to activate G proteins differently, though they interact with the signal-transducing proteins, at least partly, at a common binding site.  相似文献   

9.
The alpha subunits of Gi (Gi alpha) and Gs (guanine-nucleotide-binding proteins involved in adenylate cyclase inhibition and stimulation, respectively) was ADP-ribosylated by cholera toxin in differentiated HL-60 cell membranes upon stimulation of chemotactic receptors by fMLF (fM, N-formylmethionine). The ADP-ribosylation site of Gi alpha modified by cholera toxin appeared to be different from that modified by pertussis toxin [Iiri, T., Tohkin, M., Morishima, N., Ohoka, Y., Ui, M. & Katada, T. (1989) J. Biol. Chem. 264, 21,394-21,400]. This allowed us to investigate how the two types of ADP-ribosylation influence the function of the signal-coupling protein. The major findings observed in HL-60 cell membranes, where the same Gi alpha molecule was ADP-ribosylated by treatment of the membranes with either toxin, are summarized as follows. (a) More fMLF bound with a high affinity to cholera-toxin-treated membranes than to the control membranes. The high-affinity binding was, however, not observed in pertussis-toxin-treated membranes. (b) Although fMLF stimulated guanine nucleotide binding and GTPase activity in control membranes, stimulation was almost completely abolished in pertussis-toxin-treated membranes. In contrast, fMLF-dependent stimulation of GTPase activity, but not that of guanine nucleotide binding was attenuated in cholera-toxin-treated membranes. (c) Gi alpha, once modified by cholera toxin, still served as a substrate of pertussis-toxin-catalyzed ADP-ribosylation; however, the ADP-ribosylation rate of modified Gi was much lower than that of intact Gi. These results suggested that Gi ADP-ribosylated by cholera toxin was effectively capable of coupling with fMLF receptors, resulting in formation of high-affinity fMLF receptors, and that hydrolysis of GTP bound to the alpha subunit was selectively impaired by its ADP-ribosylation by cholera toxin. Thus, unlike the ADP-ribosylation of Gi by pertussis toxin, cholera-toxin-induced modification would be of great advantage to the interaction of Gi with receptors and effectors that are regulated by the signal-coupling protein. This type of modification might also be a candidate for unidentified G proteins which were less sensitive to pertussis toxin and appeared to be involved in some signal-transduction systems.  相似文献   

10.
A 40-kDa protein, in addition to the alpha-subunits of Gs (a GTP-binding protein involved in adenylate cyclase stimulation), was [32P]ADP-ribosylated by cholera toxin (CT) in the membranes of neutrophil-like HL-60 cells, only if formyl Met-Leu-Phe (fMLP) was added to the ADP-ribosylation mixture. The 40-kDa protein proved to be the alpha-subunit of Gi serving as the substrate of pertussis toxin, islet-activating protein (IAP). No radioactivity was incorporated into this protein in membranes isolated from HL-60 cells that had been exposed to IAP. Gi-alpha purified from bovine brain and reconstituted into IAP-treated cell membranes was ADP-ribosylated by CT plus fMLP. Gi-alpha was ADP-ribosylated by IAP, but not by CT plus fMLP, in membranes from cells that had been pretreated with CT plus fMLP. When membrane Gi-alpha [32P]ADP-ribosylated by CT plus fMLP or IAP was digested with trypsin, the radiolabeled fragments arising from the two proteins were different from each other. These results suggest that CT ADP-ribosylates Gi-alpha in intact cells when coupled fMLP receptors are stimulated and that the sites modified by two toxins are not identical. CT-induced and fMLP-supported ADP-ribosylation of Gi-alpha was favored by Mg2+ and allow concentrations of GTP or its analogues but suppressed by GDP. The ADP-ribosylation did not occur at all, even in the presence of ADP-ribosylation factor that supported CT-induced modification of Gs, in phospholipid vesicles containing crude membrane extract in which Gi was functionally coupled to stimulated fMLP receptors. Thus, Gi activated via coupled receptors is the real substrate of CT-catalyzed ADP-ribosylation. This reaction may depend on additional factor(s) that are too labile to survive the process of membrane extraction.  相似文献   

11.
Activation of NADPH oxidase in undifferentiated HL-60 leukemic cells and in HL-60 cells differentiated along the myeloid pathway with dibutyryl cyclic AMP (dbcAMP) or dimethyl sulfoxide (Me2SO) was studied. Upon stimulation with a calcium ionophore, a phorbol ester, arachidonic acid or gamma-hexachlorocyclohexane, Me2SO-differentiated HL-60 cells generated superoxide (O2-) at higher rates than dbcAMP-differentiated cells. Undifferentiated cells generated O2- only at low rates upon stimulation with the above agents. In cell-free systems, NADPH oxidase activity was reconstituted by combining membranes of undifferentiated or dbcAMP- or Me2SO-differentiated HL-60 cells, cytosol of Me2SO-differentiated cells and arachidonic acid. This basal O2- formation was enhanced several-fold by guanosine 5'-O-(3-thiotriphosphate) (GTP[gamma S]), a potent activator of guanine nucleotide-binding proteins. In contrast, cytosol of dbcAMP-differentiated cells reconstituted O2- formation only in the presence of GTP[gamma S], and cytosol of undifferentiated cells was inactive. Submaximally stimulatory amounts of cytosolic protein of Me2SO- and dbcAMP-differentiated cells synergistically stimulated O2- formation in the presence but not in the absence of GTP[gamma S]. We conclude that differentiations of HL-60 cells with Me2SO and dbcAMP are not equivalent with respect to activation of NADPH oxidase and that two cytosolic activation factors are involved in the regulation of this effector system.  相似文献   

12.
N-Formyl-methionyl peptides can specifically bind to surface receptors on phagocytic cells. A single copy of N-formyl-methionine-leucine-phenylalanine (fMLF) covalently linked to a poly(ethylene glycol)-based polymer displayed reduced binding avidity (K(d) = 190 nM) for differentiated HL-60 cells relative to free fMLF (K(d) = 28 nM). Increasing the number of fMLF residues (up to eight) attached to a single polymer results in enhanced avidity for these cells (K(d) = 0.18 nM), which appears to be independent of whether the polymer backbone is linear or branched. However, no conjugate showed enhanced ability to activate phagocytic cells, relative to the free peptide (EC(50) = 5 nM), as measured by transient stimulation of release of calcium ions from intracellular stores into the cytoplasm. A polymer bearing four fMLF and four digoxigenin residues showed specific enhancement in binding to differentiated HL-60 cells and mouse peritoneal macrophages in situ relative to a polymer lacking fMLF; no such enhancement was seen in binding to receptor-negative lymphocytic Jurkat cells. These results suggest that multiple fMLF residues linked to a drug-delivery polymer can be used to target appended drugs to phagocytic cells with relatively little toxicity due to cellular activation.  相似文献   

13.
As HL-60 cells matured along the granulocytic pathway, phorbol diester-induced superoxide anion production was compared to phorbol diester-induced protein phosphorylation using an in vitro phosphorylation technique. Maturation was induced by 0, 2, 4, or 6 days incubation with dimethyl sulfoxide (Me2SO). In 0 day Me2SO HL-60 cells, phorbol 12-myristate 13-acetate induced phosphorylation of protein pp29 (Mr = 28,600) and to a lesser extent protein pp76 (Mr = 76,300). With increased time of Me2SO incubation, phorbol 12-myristate 13-acetate induced phosphorylation of pp212 (Mr = 211,800), pp134 (Mr = 134,200), and pp76, whereas the phosphorylation of pp29 did not change appreciably. In close agreement with this increase in protein phosphorylation was the observed increase in phorbol diester-induced superoxide anion formation. Morphological characterization of cells during Me2SO-induced differentiation reveals that these increases in phorbol diester responses are probably attributable to the proportional rise in metamyelocytes, band, and segmented neutrophils. A variety of phorbol diesters increased superoxide anion generation in HL-60 cells differentiated into granulocyte-like cells by 6-day incubation with Me2SO. The structure-activity relationship of these phorbol diester derivatives for protein phosphorylation was strongly correlated to their ability to increase superoxide anion generation. Thus, we propose that phorbol diester-induced phosphorylation of pp212, pp134, and pp76, but not pp29 may play a role in mediating the functional response of phorbol diester-induced superoxide anion generation in HL-60 cells differentiated into mature granulocyte-like cells.  相似文献   

14.
P C Hoyle  R J Freer 《FEBS letters》1984,167(2):277-280
A multifunctional receptor for N-formylpeptides exists on the membranes of neutrophils. This receptor has now been isolated from neutrophils derived from HL-60 promyelocytic leukemia cells. After solubilization by Nonidet-P40 and purification by affinity chromatography and HPLC the isolated receptor was reconstituted into egg phosphatidylcholine vesicles by SM-2 Bio-Bead removal of the Nonidet-P40. Analysis of the affinity and selectivity of the receptor was done by direct binding of two high-affinity ligands, formyl-Met-Leu-[3H]Phe-OH and formyl-Nle-Leu-Phe-[3H]Tyr-OH. The data suggest that the receptor can be isolated and reconstituted without apparent alteration of its binding affinity and selectivity, and that there appear to be no co-factors or subunits upon which these binding characteristics are dependent.  相似文献   

15.
gamma-Aminobutyric acidB (GABAB) receptor recognition sites that inhibit cyclic AMP formation, open potassium channels, and close calcium channels are coupled to these effector systems by guanine nucleotide binding proteins (G proteins). These G proteins are ADP-ribosylated by islet-activating protein (IAP), also known as pertussis toxin. This process prevents receptor coupling to these G proteins. In slices of cerebral cortex and hippocampus from rat, stimulation of GABAB receptors with baclofen, a receptor agonist, also potentiates the accumulation of cyclic AMP stimulated by beta-adrenergic agonists. It was unknown whether those GABAB receptors that potentiate the beta-adrenergic response were also sensitive to IAP. IAP was injected intracerebroventricularly into rats to ADP-ribosylate IAP-sensitive G proteins. Four days after the IAP injection, 38% and 52% of these G proteins from cerebral cortex and hippocampus, respectively, were ADP-ribosylated by the IAP injection. In slices of both structures prepared from IAP-treated rats, the GABAB receptor-mediated potentiation of the beta-adrenergic receptor response was attenuated. Thus, many GABAB receptor-mediated responses are coupled to IAP-sensitive G proteins.  相似文献   

16.
The 55-kDa TNFR1 (type I tumor necrosis factor receptor) can be released to the extracellular space by two mechanisms, the proteolytic cleavage and shedding of soluble receptor ectodomains and the release of full-length receptors within exosome-like vesicles. We have shown that the brefeldin A-inhibited guanine nucleotide exchange protein BIG2 associates with TNFR1 and selectively modulates the release of TNFR1 exosome-like vesicles via an ARF1- and ARF3-dependent mechanism. Here, we assessed the role of BIG2 A kinase-anchoring protein (AKAP) domains in the regulation of TNFR1 exosome-like vesicle release from human vascular endothelial cells. We show that 8-bromo-cyclic AMP induced the release of full-length, 55-kDa TNFR1 within exosome-like vesicles via a protein kinase A (PKA)-dependent mechanism. Using RNA interference to decrease specifically the levels of individual PKA regulatory subunits, we demonstrate that RIIbeta modulates both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles. Consistent with its AKAP function, BIG2 was required for the cAMP-induced PKA-dependent release of TNFR1 exosome-like vesicles via a mechanism that involved the binding of RIIbeta to BIG2 AKAP domains B and C. We conclude that both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles occur via PKA-dependent pathways that are regulated by the anchoring of RIIbeta to BIG2 via AKAP domains B and C. Thus, BIG2 regulates TNFR1 exosome-like vesicle release by two distinct mechanisms, as a guanine nucleotide exchange protein that activates class I ADP-ribosylation factors and as an AKAP for RIIbeta that localizes PKA signaling within cellular TNFR1 trafficking pathways.  相似文献   

17.
Using high-resolution Mono Q column chromatography, we purified 6 distinct peaks of GTP-binding proteins from bovine brain membranes. Five of them consisted of 3 polypeptides with alpha beta gamma-subunits and served as the substrate of islet-activating protein (IAP), pertussis toxin. The other one was purified as alpha-subunit alone and was also ADP-ribosylated by IAP in the presence of beta gamma-subunits. When each alpha-subunit was characterized by immunoblot analysis using various antibodies with defined specificity, the two of them were identified as Gi-1 and Gi-2, and other 4 appeared to be Go or Go-like G proteins. The alpha-subunits of immunologically Go-like proteins were apparently distinguishable from one another on elution profiles from the Mono Q column. Thus, there was a heterogeneity of the alpha-subunit of Go in the brain membranes.  相似文献   

18.
In rabbit peritoneal neutrophils prelabeled with [3H] lyso platelet-activating factor, a protein kinase C inhibitor, staurosporine (> 1 microM), increased [3H]phosphatidylethanol ([3H]PEt) level in the presence of ethanol in a concentration- and time-dependent manner, providing evidence for staurosporine activation of phospholipase D (PLD). The staurosporine activation of the enzyme absolutely required both extracellular calcium and cytochalasin B, and was almost completely inhibited by pretreatment of the cells with pertussis toxin (IAP). In a reconstituted system where the purified Gi1 had been incorporated into phospholipid vesicles, staurosporine activated GTPase activity of Gi1 in a concentration-dependent fashion, with a maximal 4-5-fold effect. ADP-ribosylation by IAP of Gi1 in vesicles significantly suppressed the staurosporine activation. As with the GTPase activity of Gi1, GTPase activities of other purified IAP-sensitive G proteins, such as Gi2 and G(o), were significantly stimulated by staurosporine, but the cholera toxin substrate Gs was appreciably less sensitive to the staurosporine stimulation. The staurosporine activation of GTPase was also observed in rabbit neutrophil membranes from control cells, but not in membranes from IAP-treated neutrophils. From these results, we conclude that the staurosporine activation of PLD in rabbit neutrophils is attributed to the direct activation of an IAP-sensitive G protein in a similar manner to receptors occupied by agonists. By contrast, staurosporine failed to activate phosphoinositide-specific phospholipase C (PI-PLC) under the conditions in which it activated PLD, indicating that there exists a PLD activation pathway independent of PI-PLC. Furthermore, it was found that N-acetyl-beta-glucosaminidase release from the granules of intact neutrophils was evoked by staurosporine to almost the same extent as by fMLP (100 nM), but O2- generation was not affected. These results suggest a possibility that PLD pathway plays an important role in enzyme release, but is not sufficient for O2- generation, in rabbit peritoneal neutrophils.  相似文献   

19.
A chemotactic peptide stimulated the high-affinity GTPase activity in membrane preparations from guinea pig neutrophils. The enzyme stimulation was inhibited by prior exposure of the membrane-donor cells to islet-activating protein (IAP), pertussis toxin, or by direct incubation of the membrane preparations with its A-protomer (the active peptide) in the presence of NAD. The affinity for the chemotactic peptide binding to its receptors was lowered by guanyl-5'-yl beta, gamma-imidodiphosphate (Gpp(NH)p) reflecting its coupling to the guanine nucleotide regulatory protein in neutrophils. The affinity in the absence of Gpp(NH)p was lower, but the affinity in its presence was not, in the A-protomer-treated membranes than in nontreated membranes. The inhibitory guanine nucleotide regulatory protein of adenylate cyclase (Ni) was purified from rat brain, and reconstituted into the membranes from IAP-treated cells. The reconstitution was very effective in increasing formyl-Met-Leu-Phe-dependent GTPase activity and increasing the chemotactic peptide binding to membranes due to affinity increase. The half-maximal concentration of IAP to inhibit GTPase activity was comparable to that of the toxin to inhibit the cellular arachidonate-releasing response which was well correlated with ADP-ribosylation of a membrane Mr = 41,000 protein (Okajima, F., and Ui, M. (1984) J. Biol. Chem. 259, 13863-13871). It is proposed that the IAP substrate, Ni, couples to the chemotactic peptide receptor and mediates arachidonate-releasing responses in neutrophils, as it mediates adenylate cyclase inhibition in many other cell types.  相似文献   

20.
Changes in multicatalytic proteinase activity during differentiation were investigated using Me2SO-induced differentiation of murine erythroleukemia cells as a model. The apparent ATP-dependent multicatalytic proteinase activity decreased in the Me2SO-treated cells with ATP-dependent incorporation of [3H]diisopropyl fluorophosphate decreasing notably after Me2SO-treatment. This decrease in activity does not seem to arise from a cessation of cell-proliferation, because no significant changes in proteinase activity were observed under different culture conditions. Hydroxyapatite column chromatography was employed to analyze the form of multicatalytic proteinase. It was clearly demonstrated that the 26S form of the proteinase decrease in the differentiated cells relative to normal cells. Multicatalytic proteinase-associated proteins that bind to the proteinase in an ATP-dependent manner were purified on an anti-multicatalytic proteinase IgG conjugated column. Only a small amount of protein was recovered from the differentiated cells. These results suggest that the decrease in multicatalytic proteinase-associated proteins that occurs upon cell-differentiation abolishes the ATP-dependent activity of the proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号