首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Pseudomonas fluorescens SBW25, a plant growth promoting bacterium, has been widely studied due to its potential as an inoculum for improving crop yields. Environmental inoculants are usually applied on seeds or directly to soil and to effectively promote plant growth they need to be viable and active. However, it is difficult to study the physiological status of specific microorganisms in complex environments, such as soil. In this study, our aim was to use molecular tools to specifically monitor the physiological status of P. fluorescens SBW25 in soil and in pure cultures incubated under different nutritional conditions. The cells were previously tagged with marker genes (encoding green fluorescent protein and bacterial luciferase) to specifically track the cells in environmental samples. The physiological status of the cells was determined using the viability stains 5-cyano-2,3-ditolyl-tetrazolium chloride (CTC) and propidium iodide (PI), which stain active and dead cells, respectively. Luciferase activity was used to monitor the metabolic activity of the population. Most of the cells died after incubation for nine days in nutrient rich medium. By contrast when incubated under starvation conditions, most of the population was not stained with CTC or PI (i.e. intact but inactive cells), indicating that most of the cells were presumably dormant. In soil, a large fraction of the SBW25 cell population became inactive and died, as determined by a decline in luciferase activity and CTC-stained cells, an increase in PI-stained cells, and an inability of the cells to be cultured on agar medium. However, approximately 60% of the population was unstained, presumably indicating that the cells entered a state of dormancy in soil similar to that observed under starvation conditions in pure cultures. These results demonstrate the applicability of this approach for monitoring the physiological status of specific cells under stress conditions, such as those experienced by environmental inoculants in soil.  相似文献   

2.
Abstract The aac(6')-lb' gene from Pseudomonas fluorescens BM2687, encoding an aminoglycoside 6'- N -acetyltransferase type II which confers resistance to gentamicin but not to amikacin, was characterized. Nucleotide sequence determination indicated total identity between aac6')-lb and the aac(6')-lb gene from Pseudomonas aeruginosa BM2656 [1] with the exception of a C-to-T transition that results in a serine to lecine substitution at position 83 of the deduced polypeptide. The aac(6')-lb gene specifies a type I enzyme which confers resistance to amikacin but not to gentamicin [2]. It thus appears that the point mutation detected is responsible for enzymic altered substrate specificity.  相似文献   

3.
The bioluminescently marked Pseudomonas fluorescens strain 5RL, has been used previously to follow colonisation of soy bean roots (De Weger et al. [1991] Appl. Environ. Microbiol. 57:36-41). In the present paper the method has been further developed and optimized for wheat roots and it is used to get a quick overview of the colonisation patterns of many different root systems at the same time. Colonisation was followed on wheat plants grown in our gnotobiotic sand system (Simons et al., 1996. Mol Plant Microbe Interact 9: 600–607) and the following results were obtained. (i) A spatio-temporal analysis of the colonisation of wheat roots showed that 4 days after planting the highest bacterial activity was observed at the upper part of the root. After 6 days the high bacterial activity at the upper part was further increased, whereas spot-like activities were observed on the lower root parts, possibly due to micro-colonies. (ii) Bacterial mutations causing lack of motility or auxotrophy for amino acids resulted in impaired colonisation of the lower root parts, indicating that motility and prototrophy for the involved amino acid(s) are important factors for wheat root colonisation by strain 5RL. (iii) Coinoculation of strain 5RL with other wild type Pseudomonas strains on the root influenced the colonisation pattern observed for strain 5RL. Colonisation was not visually affected when the competing strain was a poor root coloniser, but was severely reduced when the competing strain was a good root coloniser. The results show that the spatio-temporal colonisation of wheat root by P. fluorescens strain 5RL and derivatives is similar to that of strain WCS365 on tomato. The advantage of the use of lux-marked strains is that the results are obtained much quicker than when conventional methods are used and that the result is supplied as an image of the colonisation pattern of many different roots.  相似文献   

4.
5.
IncQ marker plasmids were previously constructed to enable the analysis of the survival of populations of Pseudomonas putida released into lake water (C. Winstanley, J. A. W. Morgan, R. W. Pickup, J. G. Jones, and J. R. Saunders, Appl. Environ. Microbiol. 55:771-777, 1989). We constructed equivalent IncP plasmids, pLV1016 and pLV1017, to provide conjugative alternative systems. Detection of the xylE gene carried by marker plasmids was found to be a valid indicator to use for studying the survival of released populations by culturing on nonselective media. These plasmids were used to study the survival of populations of Pseudomonas putida in both sterile and untreated lake water. The effects of inoculum size, the metabolic burden imposed on the cell by the unregulated expression of xylE, and an auxotrophic mutation carried by the host strain were studied. We also assessed the reproducibility and hence the predictability of the survival of released populations. Model systems with a single lake water sample and model systems with three different lake water samples, taken from the same site in consecutive months, were used to analyze variability between replicates and to assess differences caused by host strain or water sample. A large variability was found depending on which water sample was used. These findings imply that it will be difficult to predict accurately the survival of released populations in the natural environment.  相似文献   

6.
Qin WX  Wan F  Sun FY  Zhang PP  Han LW  Huang Y  Jiang HQ  Zhao XT  He M  Ye Y  Cong WM  Wu MC  Zhang LS  Yang NW  Gu JR 《Cell research》2001,11(3):209-216
INTRODUCTIONLoss of heterozygosity (LOH) at chromosoma1loci associated with tumor suppressor genes has beenimplicated in the genesis of many types of humanmalignancies. On the basis of frequent LOH in tu-mors, coupled with linkage analysis in some heredi-tary cancer syndromes, a number of tumor suppres-sor genes, such as RB[l], DCC[2], NF2[3], VHLI4],MTh1[5], DML/OM1[6], and PrsN/rmC1[7l have been successively isolated.It has beell reported that LOH occurred at l7p invarious ty…  相似文献   

7.
Hessian fly [Mayetiola destructor (Say)] is one of the major insect pests of wheat (Triticum aestivum L.) worldwide. Hessian fly (Hf)-resistance genes H16 and H17 were reported to condition resistance to Hf biotype L that is prevalent in many wheat-growing areas of eastern USA, and both of them were previously assigned to wheat chromosome 5A by their linkage to H9. The objectives in this study were to (1) map H16 and H17 independent of their linkage with H9 and (2) identify DNA markers that co-segregate with H16 or H17, and that are useful for selection of these genes in segregating populations and to combine these genes with other Hf-resistance genes in wheat cultivars. Contrary to previously reported locations, H16 and H17 did not show linkage with the molecular markers on chromosome 5A. Instead, both of them are linked with the molecular markers on the short arm of chromosome 1A (1AS). The simple sequence repeat (SSR) marker Xpsp2999 and EST-derived SSR (eSSR) marker Xwem6b are two flanking markers that are linked to H16 at genetic distances of 3.7 and 5.5 cM, respectively. Similarly, H17 is located between markers Xpsp2999 and Xwem6b at genetic distances of 6.2 and 5.1 cM, respectively. Five other SSR and eSSR markers including Xcfa2153, Xbarc263, Xwem3a, Xwmc329, and Xwmc24 were also linked to H16 and H17 at close genetic distances. These closely linked molecular markers should be useful for pyramiding H16 and H17 with other Hessian fly resistance genes in a single wheat genotype. In addition, using Chinese Spring deletion line bin mapping we positioned all of the linked markers and the Hf-resistance genes (H16 and H17) to the distal 14% of chromosome 1AS, where Hf-resistance genes H9, H10, and H11 are located. Our results together with previous studies suggest that Hf-resistance genes H9, H10, H11, H16, and H17 along with the pathogen resistance genes Pm3 and Lr10 appear to occupy a resistance gene cluster in the distal region of chromosome 1AS in wheat. Contribution from Purdue Univ. Agric. Res. Programs Journal Article No. 2007-18105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号