首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Estoup  L. Garnery  M. Solignac    J. M. Cornuet 《Genetics》1995,140(2):679-695
Samples from nine populations belonging to three African (intermissa, scutellata and capensis) and four European (mellifera, ligustica, carnica and cecropia) Apis mellifera subspecies were scored for seven microsatellite loci. A large amount of genetic variation (between seven and 30 alleles per locus) was detected. Average heterozygosity and average number of alleles were significantly higher in African than in European subspecies, in agreement with larger effective population sizes in Africa. Microsatellite analyses confirmed that A. mellifera evolved in three distinct and deeply differentiated lineages previously detected by morphological and mitochondrial DNA studies. Dendrogram analysis of workers from a given population indicated that super-sisters cluster together when using a sufficient number of microsatellite data whereas half-sisters do not. An index of classification was derived to summarize the clustering of different taxonomic levels in large phylogenetic trees based on individual genotypes. Finally, individual population X loci data were used to test the adequacy of the two alternative mutation models, the infinite allele model (IAM) and the stepwise mutation models. The better fit overall of the IAM probably results from the majority of the microsatellites used including repeats of two or three different length motifs (compound microsatellites).  相似文献   

2.
Varroa destructor, now a major pest of the Western honeybee, Apis mellifera, switched from its original host, the Eastern honeybee, A. cerana, ca. 50 years ago. So far, only two out of several known mitochondrial haplotypes of V. destructor have been found to be capable of reproducing on A. mellifera (Korea and Japan). These haplotypes are associated in almost complete cytonuclear disequilibrium to diagnostic alleles at 11 microsatellite loci. By contrast, microsatellite polymorphism within each type is virtually absent, because of a severe bottleneck at the time of host change. Accordingly, 12 mitochondrial sequences of 5185 nucleotides displayed 0.40% of nucleotide divergence between haplotypes and no intra haplotype variation. Hence, each type has a quasi-clonal structure. The nascent intratype variability is subsequent to the clone formation 50 years ago: in both types the variant alleles differ from the most common by one (in 10 cases), two (five cases) or three (one case) repeated motifs. In addition to individuals of the two 'pure' types, five F1 hybrids and 19 recombinant individuals (Japan alleles introgressed into the Korea genetic background) were detected. The existence of F1 and recombinant individuals in admixed populations requires that double infestations of honeybee cells occur in a high proportion but the persistence of pure types suggests a post-zygotic isolation between the two clones.  相似文献   

3.
We developed 12 polymorphic microsatellite loci for the Asian honeybee, Apis cerana using the magnetic particle method. Eight of these 12 were highly polymorphic, having four to seven alleles with an expected heterozygosity of 0.38 to 0.78. The primers also produce polymorphic products in related honeybee species such as Apis nigrocincta. These loci can be used to study parameters associated with genetic structure, such as paternity frequency and worker reproduction.  相似文献   

4.
The fitness consequences of inbreeding and outbreeding have intrigued biologists for a long time. Recently a measure of relatedness of parental haplotypes has been proposed called mean d(2). This measure is based on a stepwise mutational process and therefore is tailored to microsatellite genetic markers. Theoretical work suggests that mean d(2) typically is less suited for measuring fitness consequences due to close inbreeding rather than heterozygosity. However, mean d(2) may be more appropriate than heterozygosity for measuring divergence times over longer time scales and thus for detecting outbreeding depression. Here, simulations are used to (1). identify appropriate standardization coefficients and transformations for mean d(2), and (2). evaluate mean d(2) as a measure of divergence time of parental lineages over time scales up to 10000 generations. Results show that mean d(2) is a linear predictor of divergence time. The coefficient of variation of mean d(2) approaches a constant value with increasing divergence time and therefore logarithm transformation is appropriate to restore homoscedasticity. When mutation rates and sizes are known for each locus they can be incorporated into a standardization coefficient to increase the precision of mean d(2). As few as 10 loci can explain more than 70% of the variation in divergence time between lineages. While heterozygosity outperforms mean d(2) at detecting differences in divergence time over relative short time periods (or=1000 generations). However, gene flow of as little as 1% per generation can significantly reduce the ability of either mean d(2) or heterozygosity to estimate divergence time.  相似文献   

5.
Jochens A  Caliebe A  Rösler U  Krawczak M 《Genetics》2011,189(4):1403-1411
The rate of microsatellite mutation is dependent upon both the allele length and the repeat motif, but the exact nature of this relationship is still unknown. We analyzed data on the inheritance of human Y-chromosomal microsatellites in father-son duos, taken from 24 published reports and comprising 15,285 directly observable meioses. At the six microsatellites analyzed (DYS19, DYS389I, DYS390, DYS391, DYS392, and DYS393), a total of 162 mutations were observed. For each locus, we employed a maximum-likelihood approach to evaluate one of several single-step mutation models on the basis of the data. For five of the six loci considered, a novel logistic mutation model was found to provide the best fit according to Akaike's information criterion. This implies that the mutation probability at the loci increases (nonlinearly) with allele length at a rate that differs between upward and downward mutations. For DYS392, the best fit was provided by a linear model in which upward and downward mutation probabilities increase equally with allele length. This is the first study to empirically compare different microsatellite mutation models in a locus-specific fashion.  相似文献   

6.
Evidence for complex mutations at microsatellite loci in Drosophila.   总被引:6,自引:0,他引:6  
I Colson  D B Goldstein 《Genetics》1999,152(2):617-627
Fifteen lines each of Drosophila melanogaster, D. simulans, and D. sechellia were scored for 19 microsatellite loci. One to four alleles of each locus in each species were sequenced, and microsatellite variability was compared with sequence structure. Only 7 loci had their size variation among species consistent with the occurrence of strictly stepwise mutations in the repeat array, the others showing extensive variability in the flanking region compared to that within the microsatellite itself. Polymorphisms apparently resulting from complex nonstepwise mutations involving the microsatellite were also observed, both within and between species. Maximum number of perfect repeats and variance of repeat count were found to be strongly correlated in microsatellites showing an apparently stepwise mutation pattern. These data indicate that many microsatellite mutation events are more complex than represented even by generalized stepwise mutation models. Care should therefore be taken in inferring population or phylogenetic relationships from microsatellite size data alone. The analysis also indicates, however, that evaluation of sequence structure may allow selection of microsatellites that more closely match the assumptions of stepwise models.  相似文献   

7.
Although microsatellites are one of the most popular tools in genetic studies, their mutational dynamics and evolution remain unclear. Here, we apply extensive pedigree genotyping to identify and analyze the patterns and factors associated with de novo germline mutations across nine microsatellite loci in a wild population of lesser kestrels (Falco naumanni). A total of 10 germline mutations events were unambiguously identified in four loci, yielding an average mutation rate of 2.96x10(-3). Across loci, mutation rate was positively correlated with locus variability and average allele size. Mutations were primarily compatible with a stepwise mutation model, although not exclusively involved single-step changes. Unexpectedly, we found an excess of maternally transmitted mutations (male-to-female ratio of 0.1). One of the analyzed loci (Fn2.14) resulted hypermutable (mutation rate=0.87%). This locus showed a size-dependent mutation bias, with longer alleles displaying deletions or additions of a small number of repeat than shorter alleles. Mutation probability at Fn2.14 was higher for females and increased with parental (maternal) age but was not associated with individual physical condition, multilocus heterozygosity, allele length or allele span. Overall, our results do not support the male-biased mutation rate described in other organisms and suggest that mutation dynamics at microsatellite loci are a complex process which requires further research.  相似文献   

8.
Within recent years, microsatellite have become one of the most powerful genetic markers in biology. For several mammalian species, microsatellite mutation rates have been estimated on the order of 10(- 3)-10(-5). A recent study, however, demonstrated mutation rates in Drosophila melanogaster of at least one order of magnitude lower than those in mammals. To further test this result, we examined mutation rates of different microsatellite loci using a larger sample size. We screened 24 microsatellite loci in 119 D. melanogaster lines maintained for approximately 250 generations and detected 9 microsatellite mutations. The average mutation rate of 6.3 x 10(-6) is identical to the mutation rate from a previous study. Most interestingly, all nine mutations occurred at the same allele of one locus (DROYANETSB). This hypermutable allele has 28 dinucleotide repeats and is among the longest microsatellite reported in D. melanogaster. The allele-specific mutation rate of 3.0 x 10(-4) per generation is within the range of mammalian mutation rates. Future microsatellite analyses will have to account for the dramatic differences in allele-specific mutation rates.   相似文献   

9.
Hitchhiking and associative overdominance at a microsatellite locus   总被引:6,自引:2,他引:4  
The possible effects of a selected locus on a closely linked microsatellite locus are discussed and analyzed in terms of coalescent theory and models of the mutation process. Background selection caused by recurrent deleterious mutations will reduce the variance of allele size at a microsatellite locus. The occasional substitution of advantageous alleles (genetic hitchhiking) will also reduce the variance, but a high mutation rate at a microsatellite locus can restore the variance relatively rapidly. Overdominance at the selected locus will increase the variance at the microsatellite locus and create partitioning of the variation in allele size among gametes carrying one or the other of the overdominant alleles. These results suggest that neutral microsatellite loci can provide indicators of selective processes at closely linked loci.   相似文献   

10.
菲律宾蛤仔大连群体不同世代的遗传多样性   总被引:1,自引:0,他引:1  
采用12对有效微卫星引物对大连群体菲律宾蛤仔连续4个选育世代(F1、F2、F3、F4)的144个个体进行了遗传多样性分析。结果表明:共获121个等位基因,每个位点的等位基因数在2-6个不等,其大小在101-273 bp之间;各个世代平均等位基因数在3.75-4.58,平均观测杂合度在0.3391-0.3860之间。从F-检验结果上看,所有世代内有2个位点遗传分化较弱,8个位点遗传分化中等,2个位点遗传分化较大;配对比较Fst值(0.05-0.15)表明4个世代群体间遗传分化程度中等。Fis值表明有2个世代位点杂合度处于过剩状态;但对连续4个世代而言,每个世代均表现出一定程度的杂合子缺失。随着世代连续选育的进行,Nei氏遗传相似性逐渐减小(0.8203-0.8107-0.8031);遗传距离逐渐增大(0.1918-0.2099-0.2129);不同世代群体间遗传相似性系数为0.7873-0.8685,遗传距离为0.141-0.2391。4个世代平均PIC值为0.5055,表明选育后代遗传多样性较好,还有较大的选育潜力,可以继续进行上选。  相似文献   

11.
We present a set of 18 microsatellite DNA markers that can be run in two multiplex polymerase chain reactions as standard tool for assessing molecular ecological problems in honeybees (Apis mellifera). In addition to a set of six unlinked loci testing for classical population genetic parameters, we present three sets of four tightly linked loci, each located on three different chromosomes. These linked markers are useful for determining the number of colonies in a population as well as the parentage of drones and workers. Moreover, the tool kit can test for various modes of natural selection in honeybee populations.  相似文献   

12.
Seven polymorphic microsatellite loci have been characterized for investigating population structure in the patchily distributed herb Begonia sutherlandii. Two loci (BSU3 and BSU4) exhibited population specific null alleles; primer redesign and allele sequencing for one of these loci showed two transition mutations in the original primer site. Two loci exhibited imperfect repeat polymorphisms due to single base pair indels in the flanking region (locus BSU6) and in the microsatellite region itself (BSU7). Transversion mutations were also found in the microsatellite region of locus BSU7. The remaining three loci amplified in all individuals tested and appeared to conform to a simple stepwise mutation pattern.  相似文献   

13.
Zhang Y  Lu CY  Cao DC  Xu P  Wang S  Li HD  Zhao ZX  Sun XW 《动物学研究》2010,31(5):561-564
利用150个微卫星分子标记在F1代家系的基因型分析过程中,共有27600个等位基因从亲本向子代传递,其中在5个微卫星座位上检测到6个突变的等位基因。对突变的等位基因数目进行统计分析后得出:鲤鱼平均每个世代每个微卫星座位的突变速率为2.53×10-4。在发现突变的5个位点中,经测序发现,突变序列中插入1个以上的重复单元就导致了突变的发生。这些突变表明,鲤鱼的微卫星突变没有遵循严格的渐变突变模型(stepwise mutation model,SMM)。该文关于鲤鱼微卫星突变速率和模式的研究将会对统计鲤鱼有效群体的统计提供有效参数。  相似文献   

14.
The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain) was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca) and Pitiusas (Ibiza and Formentera), which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.  相似文献   

15.
Unisexual all-female lizards of the genus Darevskia that are well adapted to various habitats are known to reproduce normally by true parthenogenesis. Although they consist of unisexual lineages and lack effective genetic recombination, they are characterized by some level of genetic polymorphism. To reveal the mutational contribution to overall genetic variability, the most straightforward and conclusive way is the direct detection of mutation events in pedigree genotyping. Earlier we selected from genomic library of D. unisexualis two polymorphic microsatellite containing loci Du281 and Du215. In this study, these two loci were analyzed to detect possible de novo mutations in 168 parthenogenetic offspring of 49 D. unisexualis mothers and in 147 offspring of 50 D. armeniaca mothers. No mutant alleles were detected in D. armeniaca offspring at both loci, and in D. unisexualis offspring at the Du215 locus. There were a total of seven mutational events in the germ lines of four of the 49 D. unisexualis mothers at the Du281 locus, yielding the mutation rate of 0.1428 events per germ line tissue. Sequencing of the mutant alleles has shown that most mutations occur via deletion or insertion of single microsatellite repeat being identical in all offspring of the family. This indicates that such mutations emerge at the early stages of embryogenesis. In this study we characterized single highly unstable (GATA)(n) containing locus in parthenogenetic lizard species D. unisexualis. Besides, we characterized various types of mutant alleles of this locus found in the D. unisexualis offspring of the first generation. Our data has shown that microsatellite mutations at highly unstable loci can make a significant contribution to population variability of parthenogenetic lizards.  相似文献   

16.
Mutation and evolution of microsatellite loci in Neurospora   总被引:5,自引:0,他引:5  
Dettman JR  Taylor JW 《Genetics》2004,168(3):1231-1248
The patterns of mutation and evolution at 13 microsatellite loci were studied in the filamentous fungal genus Neurospora. First, a detailed investigation was performed on five microsatellite loci by sequencing each microsatellite, together with its nonrepetitive flanking regions, from a set of 147 individuals from eight species of Neurospora. To elucidate the genealogical relationships among microsatellite alleles, repeat number was mapped onto trees constructed from flanking-sequence data. This approach allowed the potentially convergent microsatellite mutations to be placed in the evolutionary context of the less rapidly evolving flanking regions, revealing the complexities of the mutational processes that have generated the allelic diversity conventionally assessed in population genetic studies. In addition to changes in repeat number, frequent substitution mutations within the microsatellites were detected, as were substitutions and insertion/deletions within the flanking regions. By comparing microsatellite and flanking-sequence divergence, clear evidence of interspecific allele length homoplasy and microsatellite mutational saturation was observed, suggesting that these loci are not appropriate for inferring phylogenetic relationships among species. In contrast, little evidence of intraspecific mutational saturation was observed, confirming the utility of these loci for population-level analyses. Frequency distributions of alleles within species were generally consistent with the stepwise mutational model. By comparing variation within species at the microsatellites and the flanking-sequence, estimated microsatellite mutation rates were approximately 2500 times greater than mutation rates of flanking DNA and were consistent with estimates from yeast and fruit flies. A positive relationship between repeat number and variance in repeat number was significant across three genealogical depths, suggesting that longer microsatellite alleles are more mutable than shorter alleles. To test if the observed patterns of microsatellite variation and mutation could be generalized, an additional eight microsatellite loci were characterized and sequenced from a subset of the same Neurospora individuals.  相似文献   

17.
Microsatellite loci are generally assumed to evolve via a stepwise mutational process and a battery of statistical techniques has been developed in recent years based on this or related mutation models. It is therefore important to investigate the appropriateness of these models in a wide variety of taxa. We used two approaches to examine mutation patterns in the malaria parasite Plasmodium falciparum: (i) we examined sequence variation at 12 tri-nucleotide repeat loci; and (ii) we analysed patterns of repeat structure and heterozygosity at 114 loci using data from 12 laboratory parasite lines. The sequencing study revealed complex patterns of mutation in five of the 12 loci studied. Alleles at two loci contain indels of 24 bp and 57 bp in flanking regions, while in the other three loci, blocks of imperfect microsatellites appear to be duplicated or inserted; these loci essentially consist of minisatellite repeats, with each repeat unit containing four to eight microsatellites. The survey of heterozygosity revealed a positive relationship between repeat number and microsatellite variability for both di- and trinucleotides, indicating a higher mutation rate in loci with longer repeat arrays. Comparisons of levels of variation in different repeat types indicate that the mutation rate of dinucleotide-bearing loci is 1.6-2.1 times faster than trinucleotides, consistent with the lower mean number of repeats in trinucleotide-bearing loci. However, despite the evidence that microsatellite arrays themselves are evolving in a manner consistent with stepwise mutation model in P. falciparum, the high frequency of complex mutations precludes the use of analytical tools based on this mutation model for many microsatellite-bearing loci in this protozoan. The results call into question the generality of models based on stepwise mutation for analysing microsatellite data, but also demonstrate the ease with which loci that violate model assumptions can be detected using minimal sequencing effort.  相似文献   

18.
Abstract.— The genealogies of samples of orthologous regions from multiple species can be classified by their shapes. Using a neutral coalescent model of two species, I give exact probabilities of each of four possible genealogical shapes: reciprocal monophyly, two types of paraphyly, and polyphyly. After the divergence that forms two species, each of which has population size N , polyphyly is the most likely genealogical shape for the lineages of the two species. At ∼ 1.300 N generations after divergence, paraphyly becomes most likely, and reciprocal monophyly becomes most likely at ∼1.665 N generations. For a given species, the time at which 99% of its loci acquire monophyletic genealogies is ∼5.298 N generations, assuming all loci in its sister species are monophyletic. The probability that all lineages of two species are reciprocally monophyletic given that a sample from the two species has a reciprocally monophyletic genealogy increases rapidly with sample size, as does the probability that the most recent common ancestor (MRCA) for a sample is also the MRCA for all lineages from the two species. The results have potential applications for the testing of evolutionary hypotheses.  相似文献   

19.
In this paper the fitness of the delta F508 heterozygote is assessed and the age of the delta F508 mutation in the cystic fibrosis locus is estimated. Data from three microsatellite loci are applied. The analysis is performed conditional on the present-day frequency of the delta F508 mutation and based on assumptions about the demographic history of the European population and the mutation rate in the three microsatellite loci. It is shown that the data gives evidence of positive selection (up to 2-3% per delta F508 heterozygote), but also that data could be explained by negative selection of roughly the same order of magnitude. The age of the delta F508 mutation is subsequently estimated; it is found that the mutation is at least 580 generations old, but could be much older depending on the microsatellite mutation rate and the exact number of substitutions experienced in the history of the three microsatellite loci.  相似文献   

20.
In long‐lived clonal plants, the overall size of a clone is often used to estimate clone age. The size of a clone, however, might be largely determined by physical or biotic interactions, obscuring the relationship between clone size and age. Here, we use the accumulation of mutations at 14 microsatellite loci to estimate clone age in trembling aspen (Populus tremuloides) from southwestern Canada. We show that the observed patterns of genetic divergence are consistent with a model of increasing ramet population size, allowing us to use pairwise genetic divergence as an estimator of clone age. In the populations studied, clone size did not exhibit a significant relationship with microsatellite divergence, indicating that clone size is not a good proxy for clone age. In P. tremuloides, the per‐locus per‐year neutral somatic mutation rate across 14 microsatellite loci was estimated to lie between 6 × 10?7 (lower bound) and 4 × 10?5 (upper bound).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号