首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calcium-activated potassium currents have been described in a wide variety of cell types. This report summarizes some important properties of these currents in smooth muscle and provides examples from our recent single channel recordings from human cystic artery.  相似文献   

3.
The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 μmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 μmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 μmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 μmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 μmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.  相似文献   

4.
Although ketamine and Ca2+-activated K+ (KCa) channels have been implicated in the contractile activity regulation of cerebral arteries, no studies have addressed the specific interactions between ketamine and the KCa channels in cerebral arteries. The purpose of this study was to examine the direct effects of ketamine on KCa channel activities using the patch-clamp technique in single-cell preparations of rabbit middle cerebral arterial smooth muscle. We tested the hypothesis that ketamine modulates the KCa channel activity of the cerebral arterial smooth muscle cells of the rabbit. Vascular myocytes were isolated from rabbit middle cerebral arteries using enzymatic dissociation. Single KCa channel activities of smooth muscle cells from rabbit cerebral arteries were recorded using the patch-clamp technique. In the inside-out patches, ketamine in the micromolar range inhibited channel activity with a half-maximal inhibition of the ketamine concentration value of 83.8 +/- 12.9 microM. The Hill coefficient was 1.2 +/- 0.3. The slope conductance of the current-voltage relationship was 320.1 +/- 2.0 pS between 0 and +60 mV in the presence of ketamine and symmetrical 145 mM K+. Ketamine had little effect on either the voltage-dependency or open- and closed-time histograms of KCa channel. The present study clearly demonstrates that ketamine inhibits KCa channel activities in rabbit middle cerebral arterial smooth muscle cells. This inhibition of KCa channels may represent a mechanism for ketamine-induced cerebral vasoconstriction.  相似文献   

5.
Reactive oxygen species (ROS) generated from NADPH oxidases and mitochondria have been implicated as key messengers for pulmonary vasoconstriction and vascular remodeling induced by agonists and hypoxia. Since Ca(2+) mobilization is essential for vasoconstriction and cell proliferation, we sought to characterize the Ca(2+) response and to delineate the Ca(2+) pathways activated by hydrogen peroxide (H(2)O(2)) in rat intralobar pulmonary arterial smooth muscle cells (PASMCs). Exogenous application of 10 microM to 1 mM H(2)O(2) elicited concentration-dependent increase in intracellular Ca(2+) concentration in PASMCs, with an initial rise followed by a plateau or slow secondary increase. The initial phase was related to intracellular release. It was attenuated by the inositol trisphosphate (IP(3)) receptor antagonist 2-aminoethyl diphenylborate, ryanodine, or thapsigargin, but was unaffected by the removal of Ca(2+) in external solution. The secondary phase was dependent on extracellular Ca(2+) influx. It was unaffected by the voltage-gated Ca(2+) channel blocker nifedipine or the nonselective cation channel blockers SKF-96365 and La(3+), but inhibited concentration dependently by millimolar Ni(2+), and potentiated by the Na(+)/Ca(2+) exchange inhibitor KB-R 7943. H(2)O(2) did not alter the rate of Mn(2+) quenching of fura 2, suggesting store- and receptor-operated Ca(2+) channels were not involved. By contrast, H(2)O(2) elicited a sustained inward current carried by Na(+) at -70 mV, and the current was inhibited by Ni(2+). These results suggest that H(2)O(2) mobilizes intracellular Ca(2+) through multiple pathways, including the IP(3)- and ryanodine receptor-gated Ca(2+) stores, and Ni(2+)-sensitive cation channels. Activation of these Ca(2+) pathways may play important roles in ROS signaling in PASMCs.  相似文献   

6.
Cai B  Gong D  Pan Z  Liu Y  Qian H  Zhang Y  Jiao J  Lu Y  Yang B 《Life sciences》2007,80(22):2060-2066
Plenty of evidence suggests that increased blood levels of homocysteine (Hcy) are an independent risk factor for the development of vascular diseases, but the underlying mechanisms are not well understood. It is well known that the larger conductance Ca(2+)-activated K(+) channels (BK(Ca)) play an essential role in vascular function, so the present study was conducted to determine direct effects of Hcy on BK(Ca) channel properties of smooth muscle cells. Whole-cell patch-clamp recordings were made in mesenteric artery smooth muscle cells isolated from normal rat and patients to investigate effects of 5, 50 and 500 microM Hcy on BK(Ca), the main current mediating vascular responses in these cells. In human artery smooth muscle cells, maximum BK(Ca) density (measured at +60 mV) was inhibited by about 24% (n=6, P<0.05). In rat artery smooth muscle cells, maximum BK(Ca) density was decreased by approximately 27% in the presence of 50 microM Hcy (n=8, P<0.05). In addition, when rat artery smooth muscle cells was treated with 50 microM Hcy for 24 h, maximum BK(Ca) density decreased by 58% (n=5, P<0.05). These data suggest that Hcy significantly inhibited BK(Ca) currents in isolated human and rat artery smooth muscle cells. BK(Ca) reduced and impaired by elevated Hcy levels might contribute to abnormal vascular diseases.  相似文献   

7.
Freshly dissociated cells from the stomach muscularis of the toad Bufo marinus have been employed to carry out a systematic set of electrophysiological studies on the membrane properties of smooth muscle. The existence of Ca2+-activated K+ channels became apparent during the first studies under current clamp. In subsequent studies under voltage clamp, a Ca2+-activated. TEA-sensitive outward current was evident, and it was more than an order of magnitude larger than any other current observed in the cells. The channel responsible, at least in part, for this large outward current has been identified on the basis of single-channel records, and some of its main characteristics have been studied. It is similar in many respects to the large-conductance, Ca2+-activated K+ channel seen in other preparations. This channel has now been found in a considerable diversity of smooth muscle types.  相似文献   

8.
Elevation of extracellular Ca(2+) concentration induces intracellular Ca(2+) signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+) pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+) concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+) signaling in frog parathyroid cells and show that Ca(2+)-activated Cl(-) channels are activated by intracellular Ca(2+) increase through an inositol 1,4,5-trisphophate (IP(3))-independent pathway. High extracellular Ca(2+) induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50) ~6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+)-induced and Ca(2+) dialysis-induced currents reversed at the equilibrium potential of Cl(-) and were inhibited by niflumic acid (a specific blocker of Ca(2+)-activated Cl(-) channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+)-induced current, suggesting the change of intracellular Cl(-) concentration in a few minutes. Extracellular Ca(2+)-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca(2+)-induced current. IP(3) dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca(2+)-induced conductance. These results indicate that high extracellular Ca(2+) raises intracellular Ca(2+) concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(-) conductance.  相似文献   

9.
10.
The possible contribution of Ca2+-activated Cl- channel [I(Cl(Ca))] and myosin light-chain kinase (MLCK) to nonadrenergic, noncholinergic slow inhibitory junction potentials (sIJP) was studied using conventional intracellular microelectrode recordings in circular smooth muscle of opossum esophageal body and guinea pig ileum perfused with Krebs solution containing atropine (3 microM), guanethidine (3 microM), and substance P (1 microM). In opossum esophageal circular smooth muscle, resting membrane potential (MP) was -51.9 +/- 0.7 mV (n = 89) with MP fluctuations of 1-3 mV. A single square-wave nerve stimulation of 0.5 ms duration and 80 V induced a sIJP with amplitude of 6.3 +/- 0.2 mV, half-amplitude duration of 635 +/- 19 ms, and rebound depolarization amplitude of 2.4 +/- 0.1 mV (n = 89). 9-Anthroic acid (A-9-C), niflumic acid (NFA), wortmannin, and 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9) abolished MP fluctuations, sIJP, and rebound depolarization in a concentration-dependent manner. A-9-C and NFA but not wortmannin and ML-9 hyperpolarized MP. In guinea pig ileal circular smooth muscle, nerve stimulation elicited an IJP composed of both fast (fIJP) and slow (sIJP) components, followed by rebound depolarization. NFA (200 microM) abolished sIJP and rebound depolarization but left the fIJP intact. These data suggest that in the tissues studied, activation of I(Cl(Ca)), which requires MLCK, contributes to resting MP, and that closing of I(Cl(Ca)) is responsible for sIJP.  相似文献   

11.
The mechanism of sensing hypoxia and hypoxia-induced activation of cerebral arterial Ca(2+)-activated K(+) (K(Ca)) channel currents and vasodilation is not known. We investigated the roles of the cytochrome P-450 4A (CYP 4A) omega-hydroxylase metabolite of arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE), and generation of superoxide in the hypoxia-evoked activation of the K(Ca) channel current in rat cerebral arterial muscle cells (CAMCs) and cerebral vasodilation. Patch-clamp analysis of K(+) channel current identified a voltage- and Ca(2+)-dependent 238 +/- 21-pS unitary K(+) currents that are inhibitable by tetraethylammonium (TEA, 1 mM) or iberiotoxin (100 nM). Hypoxia (<2% O(2)) reversibly enhanced the open-state probability (NP(o)) of the 238-pS unitary K(Ca) current in cell-attached patches. This effect of hypoxia was not observed on unitary K(Ca) currents recorded from either excised inside-out or outside-out membrane patches. Inhibition of CYP 4A omega-hydroxylase activity increased the NP(o) of K(Ca) single-channel current. Hypoxia reduced the basal endogenous level of 20-HETE by 47 +/- 3% as well as catalytic formation of 20-HETE in cerebral arterial muscle homogenates as determined by liquid chromatography-mass spectrometry analysis. The concentration of authentic 20-HETE was reduced when incubated with the superoxide donor KO(2). Exogenous 20-HETE (100 nM) attenuated the hypoxia-induced activation of the K(Ca) current in CAMCs. Hypoxia did not augment the increase in NP(o) of K(Ca) channel current induced by suicide inhibition of endogenous CYP 4A omega-hydroxylase activity with 17-octadecynoic acid. In pressure (80 mmHg)-constricted cerebral arterial segments, hypoxia induced dilation that was partly attenuated by 20-HETE or by the K(Ca) channel blocker TEA. Exposure to hypoxia caused the generation of intracellular superoxide as evidenced by intense staining of arterial muscle with the fluorescent probe hydroethidine, by quantitation using fluorescent HPLC analysis, and by attenuation of the hypoxia-induced activation of the K(Ca) channel current by superoxide dismutation. These results suggest that the exposure of CAMCs to hypoxia results in the generation of superoxide and reduction in endogenous level of 20-HETE that may account for the hypoxia-induced activation of arterial K(Ca) channel currents and cerebral vasodilation.  相似文献   

12.
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization.  相似文献   

13.
《Life sciences》1995,56(15):PL291-PL298
The aim of this study was to examine the effects of MCI-154, a new positive inotropic agent with vasodilating properties, on the Ca2+-activated K+ channel (KCa channel) of vascular smooth muscle cells. Cultured smooth muscle cells from a porcine coronary artery were studied using the patch-clamp technique. Extracellular application of 100 μM MCI-154 activated the KCa channel in intact cell-attached patch configurations. In excised inside-out patch configurations, application of 100μM MCI-154 to the cytosolic side activated the KCa channel directly, suggesting that the Ca2+ sensitivity of the KCa channel itself is modulated. Though extracellular application of 100 μM amrinone, a phosphodiesterase inhibitor, activated the KCa channel in the cell-attached patch configurations, application of 100 μm amrinone to the cytosolic side could not activate the KCa channel in inside-out patch configurations. These results indicate that different from amrinone, MCI-154 can modulate Ca2+ sensitivity of the KCa channel in vascular smooth muscle cells.  相似文献   

14.
15.
Y M Bae  K S Kim  J K Park  E Ko  S Y Ryu  H J Baek  S H Lee  W K Ho  Y E Earm 《Life sciences》2001,69(21):2451-2466
The membrane potential in vascular smooth muscle cells contributes to the regulation of cytosolic [Ca2+], which in turn regulates membrane potential by means of Ca2+i-dependent ionic currents. We investigated the characteristics of Ca2+i-dependent currents in rabbit coronary and pulmonary arterial smooth muscle cells. Ca2+i-dependent currents were recorded using the whole-cell patch-clamp technique while cytosolic [Ca2+] was increased by caffeine. The reversal potentials of caffeine-induced currents were between -80 and -10 mV under normal ionic conditions, whereas they were about 0 mV when K+-free NaCl solutions were used both in pipette and bath. The total substitution of extracellular Na+ with membrane-impermeable cation N-Methyl-D-glucamine did not affect caffeine-induced currents, implying no significant contribution of Na+ as a permeant ion to the currents. The substitution of extracellular NaCl with sucrose reduced outward component of the currents and shifted the reversal potentials according to the change in Cl- equilibrium potential. Upon application of the niflumic acid under K+-free conditions, most of the current induced by caffeine was inhibited. Taken together, the results of the present study indicate that K+ and Cl- currents are major components of Ca2+i-dependent currents in vascular smooth muscles isolated from coronary and pulmonary arteries of the rabbit, and the relative contribution of each type of current to total currents are not different between the two arteries.  相似文献   

16.
17.
Chicken gizzard smooth muscle contains large amounts of Ca2+-activated protease activity. Approximately 15 mg of purified enzyme can be obtained from 1 kg of fresh muscle. The enzyme consists of two subunits (Mr = 80,000 and 30,000) present in a 1:1 molar ratio. In the presence of CaCl2, the 80,000/30,000-dalton heterodimer (form I) is rapidly converted by limited autolysis to a 76,000/18,000-dalton species (form II). Both the 80,000- and 30,000-dalton subunits are degraded simultaneously. Moreover, the Ca2+ dependence for autolysis (K0.5 = 300 microM) is identical for both subunits. Neither the time course nor the Ca2+ dependence of the autolytic conversion reaction is altered by 10- and 20-fold molar excesses of substrate. Limited autolysis markedly reduces the Ca2+ requirement for substrate degradation. Using N-[ethyl-2-3H]maleimide-labeled 27,000-dalton cardiac myosin light chains as substrate, the Ca2+ requirement of form I was found to be quite high (K0.5 = 150 microM). Under similar conditions, the Ca2+ requirement of form II was 30-fold lower (K0.5 = 5 microM). Limited autolysis did not alter the specific activity of the enzyme. Our results demonstrate that smooth muscle contains an abundant amount of Ca2+-activated protease. Moreover, autolysis of this enzyme may play an important regulatory role by converting the native form to a species that is fully active at physiological levels of intracellular calcium ion.  相似文献   

18.
ATP inhibits smooth muscle Ca2(+)-activated K+ channels   总被引:3,自引:0,他引:3  
There has been much recent interest in the roles played by smooth-muscle K+ channels in protecting cells against ischemic and anoxic insults and in therapeutic vaso- and bronchodilation (Buckingham 1990; Longmore & Weston 1990). A K+ channel, which is uniquely sensitive to cytoplasmic ATP (KATP), has been identified as a likely candidate for mediating these important functions (Standen et al. 1989). We now show, by using electrophysiological techniques in three different types of smooth muscle, that a large-conductance voltage and Ca2(+)-sensitive channel, otherwise indistinguishable from the the large-conductance Ca2(+)-activated K+ channel (BK channel), is also sensitive to cytoplasmic ATP and cromakalim. ATP, in a dose-dependent manner, decreased the probability of channel opening (Po) of rabbit aortic, rabbit tracheal and pig coronary artery BK channels with a Ki of 0.2-0.6 mM. Cromakalim, 10 microM, partially reversed the ATP induced inhibition and increased Po. Our observations raise the possibility that the ubiquitous BK channel may play a role during pathophysiological events.  相似文献   

19.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

20.
Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号