首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The uptake of methotrexate by KB cells was observed to be dependent on time, temperature, and concentration of extracellular methotrexate. The Kd for methotrexate surface binding to KB cells was approximately 200 nM. Following exposure of KB cells to trace quantities of [3H]methotrexate for periods ranging from 6 min to 24 h, the cellular methotrexate was progressively formed into methotrexate polyglutamates and was bound to dihydrofolate reductase as well as to a particulate folate binding protein. To further study the mechanism of methotrexate uptake in KB cells, the N-hydroxysuccinimide ester of methotrexate was used to covalently label the surface of KB cells and to inhibit transport of methotrexate. The N-hydroxysuccinimide ester of methotrexate was bound to a species of protein with an apparent molecular weight of 160,000 in 1% (v/v) Triton X-100 that bound folic acid and was specifically precipitated by antiserum raised against the previously purified high-affinity folate binding protein (the folate receptor) from human KB cells. In addition, trypsin was utilized to remove surface-accessible covalently bound methotrexate. The amount of covalently bound methotrexate that could be released by trypsin initially decreased on incubation at 37 degrees C, suggesting that the methotrexate and binding protein were internalized. However, with time, trypsin could again release the covalently bound methotrexate, suggesting that the binding protein cycles from the external cell surface to the inside of the cell and out again.  相似文献   

2.
This study reports the isolation and characterization of a variant of the human CCRF-CEM leukemia cell line that overproduces the carrier protein responsible for the uptake of reduced folates and the folate analogue methotrexate. The variant was obtained by adapting CCRF-CEM cells for prolonged times to stepwise decreasing concentrations of 5-formyltetrahydrofolate as the sole folate source in the cell culture medium. From cells that were grown on less than 1 nM 5-formyl-tetrahydrofolate, a variant (CEM-7A) was isolated exhibiting a 95-fold increased Vmax for [3H]methotrexate influx compared to parental CCRF-CEM cells. The values for influx Km, efflux t0.5, and Ki for inhibition by other folate (analogue) compounds were unchanged. Affinity labeling of the carrier with an N-hydroxysuccinimide ester of [3H]methotrexate demonstrate an approximately 30-fold increased incorporation of [3H] methotrexate in CEM-7A cells. This suggests that the up-regulation of [3H]methotrexate influx is not only due to an increased amount of carrier protein, but also to an increased rate of carrier translocation or an improved cooperativity between carrier protein molecules. Incubation for 1 h at 37 degrees C of CEM-7A cells with a concentration of 5-formyltetrahydrofolate or 5-methyltetrahydrofolate in the physiological range (25 nM) resulted in a 7-fold decline in [3H]methotrexate influx. This down-regulation during incubations with 5-formyltetrahydrofolate or 5-methyltetrahydrofolate could be prevented by either the addition of 10-25 nM of the lipophilic antifolate trimetrexate or by preincubating CEM-7A cells with 25 nM methotrexate. The down-regulatory effect was specifically induced by reduced folates since incubation of CEM-7A cells with 25 nM of either methotrexate, 10-ethyl-10-deazaaminopterin, aminopterin, or folic acid, or a mixture of purines and thymidine, had no effect on [3H]methotrexate influx. Similarly, these down-regulatory effects on [3H]methotrexate transport by 5-formyltetrahydrofolate, and its reversal by trimetrexate or methotrexate, were also observed, though to a lower extent, for parental CCRF-CEM cells grown in folate-depleted medium rather than in standard medium containing high folate concentrations. These results indicate that mediation of reduced folate/methotrexate transport can occur at reduced folate concentrations in the physiological range, and suggest that the intracellular folate content may be a critical determinant in the regulation of methotrexate transport.  相似文献   

3.
4.
5.
Summary The effect of various anions on the mediated influx and efflux of [3H]methotrexate by L1210 cell plasma membrane vesicles in a HEPES buffer system was studied. Our results show that flux is stimulated to the same extent in either direction when SO4, Pi, or folate compounds (1,L5-CHO-folate-H4, methotrexate), but not Cl was present in the opposite compartment. This implies the property of directional symmetry, a condition in which differential mobility of loaded and unloaded carriers occurs in both directions.We also observed a similarity in the specificity of the interaction between various anions and carrier in each orientation of the membrane, in the order, Cl Pi SO 4 2– methotrexate < 1,L5-CHO-folate-H4. Also, the absolute differential in mobility of loaded and unloaded carrier (assumed from the extent of transstimulation obtained) varied substantially among the anions examined. No stimulation was obtained with Cl, and stimulation was twofold with Pi, SO 4 2– and methotrexate and fourfold with 1,L5-CHO-folate-H4. Transstimulation of flux from either external or internal compartment only occurred when a positive gradient of total anions was maintained in the opposite compartment. Also, no stimulation occurred when the same equivalence of two different anions are present in opposing compartments. The concentration of anions required to transstimulate [3H]methotrexate influx was increased four- to 10-fold when vesicles were equilibrated in 145mM NaCl. These results suggest that under physiological conditions, concentrative uptake of methotrexate in intact L1210 cells as a result of anion exchange would require a large positive gradient in the total concentration of internalized anions.  相似文献   

6.
A binding component with a high affinity for 5-methyltetrahydrofolate (KD = 0.11μm) is present on the external surface of L1210 cells. The amount of binder (1 pmol/mg protein) corresponds to 8 × 104 sites per cell. The participation of this component in the high-affinity 5-methyltetrahydrofolate/methotrexate transport system is supported by similarities in the KD values for 5-methyltetrahydrofolate and methotrexate binding and the Kt values of these compounds for transport. Relative affinities for other folate substrates (aminopterin, 5-formyltetrahydrofolate, and folate) and various competitive inhibitors (thiamine pyrophosphate, ADP, AMP, arsenate, and phosphate) are also similar for both the binding component and the transport system. The measured binding activity does not represent low-temperature transport of substrate into cells, since it is readily saturable with time and is eliminated by either washing the cells with buffer or by the addition of excess unlabeled substrate.  相似文献   

7.
8.
9.
10.
11.
We have studied the molecular basis for the resistance of human CEM leukemia cells to GW1843, a thymidylate synthase inhibitor. GW1843-resistant cells displayed a approximately 100-fold resistance to GW1843 and methotrexate but were collaterally sensitive to the lipophilic antifolates trimetrexate and AG337, which enter cells by diffusion. These cells exhibited a 12-fold decreased methotrexate influx but surprisingly had a 2-fold decreased folic acid growth requirement. This was associated with a 4-fold increased influx of folic acid, a 3.5-fold increased steady-state level of folic acid, and a 2.3-fold expansion of the cellular folate pool. Characterization of the transport kinetic properties revealed that GW1843-resistant cells had the following alterations: (a) 11-fold decreased transport K(m) for folic acid; (b) 6-fold increased transport K(m) for GW1843; and (c) a slightly increased transport V(max) for folic acid. Sequence analysis showed that GW1843-resistant cells contained the mutations Val-29 --> Leu, Glu-45 --> Lys, and Ser-46 --> Ile in the first transmembrane domain of the reduced folate carrier. Transfection of the mutant-reduced folate carrier cDNA into methotrexate transport null cells conferred resistance to GW1843. This is the first demonstration of multiple mutations in a confined region of the human reduced folate carrier in an antifolate-resistant mutant. We conclude that certain amino acid residues in the first transmembrane domain play a key role in (anti)folate binding and in the conferring of drug resistance.  相似文献   

12.
Alcohols inhibit the exchange transport of glucose in human erythrocytes. Comparing the inhibition by monohydroxy-alcohols, which have different distribution coefficients between medium and membrane, shows that the degree of inhibition depends mainly upon the concentration of the alcohol in the membrane. 1-butanol exerts a mixed-type inhibition; Vmax decreases and Km increases. Since also the Km of the equilibrium transport increases upon the addition of the alcohol, the changes in the Km of exchange transport cannot be attributed solely to the differently affected mobilities of the loaded and free carrier, but the affinity of glucose to the transport system is reduced. The transport system can bind two alcohol molecules. With one alcohol molecule bound the affinity of the transport system for the second alcohol molecule already increases. The nature of the bond of the alcohols to the transport system is discussed and possible explanations for the cooperative effect upon the binding of the second alcohol molecule are offered.  相似文献   

13.
The thiamin transporter encoded by SLC19A2 and the reduced folate carrier (RFC1) share 40% homology at the protein level, but the thiamin transporter does not mediate transport of folates. By using murine leukemia cell lines that express no, normal, or high levels of RFC1, we demonstrate that RFC1 does not mediate thiamin influx. However, high level RFC1 expression substantially reduced accumulation of the active thiamin coenzyme, thiamin pyrophosphate (TPP). This decreased level of TPP, synthesized intracellularly from imported thiamin, resulted from RFC1-mediated efflux of TPP. This conclusion was supported by the following observations. (i) Efflux of intracellular TPP was increased in cells with high expression of RFC1. (ii) Methotrexate inhibits TPP influx. (iii) TPP competitively inhibits methotrexate influx. (iv) Loading cells, which overexpress RFC1 to high levels of methotrexate to inhibit competitively RFC1-mediated TPP efflux, augment TPP accumulation. (v) There was an inverse correlation between thiamin accumulation and RFC1 activity in cells grown at a physiological concentration of thiamin. The modulation of thiamin accumulation by RFC1 in murine leukemia cells suggests that this carrier may play a role in thiamin homeostasis and could serve as a modifying factor in thiamin nutritional deficiency as well as when the high affinity thiamin transporter is mutated.  相似文献   

14.
15.
16.
Local anesthetics inhibit the exhange transport of glucose in human erythroytes. All compounds tested showed a competitive inhibition except lidocaine and baycaine causing a non-competitive one. Moreover the transport system can bind two inhibitor molecules to one transport site as described for tetracaine and oxybuprocaine.  相似文献   

17.
Bernd Schmidt   《BBA》1976,449(3):516-524
In 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) poisoned chloroplasts, the restoration of the fluorescence induction is presumed to be due to a back reaction of the reduced primary acceptor (Q) and the oxidized primary donor (Z+) of Photosystem II. Carbonylcyanide m-chlorophenylhydrazone (CCCP) is known to inhibit this back reaction. The influence of reduced N-methylphenazonium methosulfate (PMS) in the absence of CCCP and of oxidized PMS in the presence of CCCP on the back reaction was investigated and the following results were obtained:

1. (1) Reduced PMS at the concentration of 1 μM inhibits the back reaction as effectively as hydroxylamine, suggesting an electron donating function of reduced PMS for System II.

2. (2) The inhibition of the back reaction by CCCP is regenerated to a high degree by oxidized PMS which led to assume a cyclic System II electron flow catalysed by PMS.

3. (3) At concentrations of reduced PMS higher than 1 μM it is shown that both the fast initial emission and more significantly the variable emission are quenched.

Abbreviations: PMS, N-methylphenazonium methosulfate; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; TMPD, N,N,N′,N′-tetramethyl-p-phenylendiamine; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   


18.
The major pathway for cellular uptake of the water-soluble vitamin folic acid in mammalian cells is via a plasma membrane protein known as the reduced folate carrier (RFC). The molecular determinants that dictate plasma membrane expression of RFC as well as the cellular mechanisms that deliver RFC to the cell surface remain poorly defined. Therefore, we designed a series of fusion proteins of the human RFC (hRFC) with green fluorescent protein to image the targeting and trafficking dynamics of hRFC in living epithelial cells. We show that, in contrast to many other nutrient transporters, the molecular determinants that dictate hRFC plasma membrane expression reside within the hydrophobic backbone of the polypeptide and not within the cytoplasmic NH(2)- or COOH-terminal domains of the protein. Further, the integrity of the hRFC backbone is critical for export of the polypeptide from the endoplasmic reticulum to the cell surface. This trafficking is critically dependent on intact microtubules because microtubule disruption inhibits motility of hRFC-containing vesicles as well as final expression of hRFC in the plasma membrane. For the first time, these data define the mechanisms that control the intracellular trafficking and cell surface localization of hRFC within mammalian epithelia.  相似文献   

19.
A broad spectrum of structurally diverse anions reversibly inhibits the influx of methotrexate in L1210 cells. Several of the more effective anions and their respective inhibition constants (Ki values) were: 5-methyltetrahydrofolate (0.3 μm), bromosulfophthalein (2 μm), thiamine pyrophosphate (3 μm), 8-anilino-1-naphthalene sulfonate (7 μm), phthalate (20 μm), and AMP (50 μm). Moderate inhibition was observed with Pi (Ki = 400 μm) and other divalent inorganic anions, while small monovalent anions such as Cl? (Ki = 30 mm) were the least effective. When these same anions were tested for an effect on methotrexate efflux, stimulation was observed with some anions, while others had no effect. Enhancement was produced by folate compounds and p-aminobenzoylglutamate, small monovalent (e.g., Cl?, acetate, and lactate) and divalent (e.g., phosphate and succinate) anions, a few nucleotides (e.g., AMP), and thiamine pyrophosphate, while little or no effect was associated with trivalent anions (e.g., citrate), most nucleotides, and large organic anions (e.g., bromosulfophthalein, NAD, and NADP). Anions with the ability to promote methotrexate efflux in control cells lost this capacity upon exposure of the cells to an irreversible inhibitor of methotrexate influx. These results support the hypothesis that methotrexate transport proceeds via an anion-exchange mechanism and moreover provide evidence that anion substrates for this system can be identified by their ability to promote methotrexate efflux. Anions which appear most likely to participate in this exchange cycle in vivo are Pi and AMP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号