首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exoprotease production by Pseudomonas aeruginosa ATCC 10145 was growth-associated when cultures were grown on complex substrates such as proteins but it occurred during the decelerating growth phase when the organism was grown on amino acids, mixtures of amino acids or simple carbon sources. NH4Cl and simple carbon sources caused repression. Exoprotease was produced in chemostat cultures in response to growth under any of the nutrient limitations studied (carbon, nitrogen or phosphate). Furthermore, by growing at rates less than approximately 0.1 h-1, the repression of enzyme production could be overcome to a large degree. At low growth rates there was an inverse relationship between growth rate and exoprotease production. Thus, exoprotease production was depressed by available energy sources and was increased in response to any nutrient limitation.  相似文献   

2.
Pseudomonas fluorescens DR54 showed antagonistic properties against plant pathogenic Pythium ultimum and Rhizoctonia solani both in vitro and in planta. Antifungal activity was extractable from spent growth media, and fractionation by semi-preparative HPLC resulted in isolation of an active compound, which was identified as a new bacterial cyclic lipodepsipeptide, viscosinamide, using 1D and 2D 1H-, 13C-NMR and mass spectrometry. The new antibiotic has biosurfactant properties but differs from the known biosurfactant, viscosin, by containing glutamine rather than glutamate at the amino acid position 2 (AA2). No viscosin production was observed, however, when Ps. fluorescens DR54 was cultured in media enriched with glutamate. In vitro tests showed that purified viscosinamide also reduced fungal growth and aerial mycelium development of both P. ultimum and R. solani. Viscosinamide production by Ps. fluorescens DR54 was tightly coupled to cell proliferation in the batch cultures, as the viscosinamide produced per cell mass unit approached a constant value. In batch cultures with variable initial C, N or P nutrient levels, there were no indications of elevated viscosinamide production during starvation or maintenance of the cultures in stationary phase. Analysis of cellular fractions and spent growth media showed that a major fraction of the viscosinamide produced remained bound to the cell membrane of Ps. fluorescens DR54. The isolation, determination of structure and production characteristics of the new compound with both biosurfactant and antibiotic properties have promising perspectives for the application of Ps. fluorescens DR54 in biological control.  相似文献   

3.
Endophytes are found in meristematic bud tissues of Scots pine ( Pinus sylvestris L.) especially prior to growth, which would suggest their involvement in growth of the bud. To test this hypothesis, production of phytohormones by two bacterial ( Methylobacterium extorquens , Pseudomonas synxantha ) and one fungal endophyte ( Rhodotorula minuta ) was studied by mass spectrometry. The most common gibberellins, auxins, or cytokinins were not detected in the fractions studied. Instead, M. extorquens and R. minuta produced adenine derivatives that may be used as precursors in cytokinin biosynthesis. A plant tissue culture medium was conditioned with the endophytes, and pine tissue cultures were started on the media. Tetracycline inhibited callus production, which was restored on the endophyte-conditioned media. In addition, conditioning mitigated browning of the Scots pine explants. However, a decrease in tissue size was observed on the endophyte-conditioned media. Addition of adenosine monophosphate in the plant culture medium restored callus production and increased growth of the tissues, but had no effect on browning. Therefore, production of adenine ribosides by endophytes may play some role in the morphological effect observed in the pine tissues.  相似文献   

4.
A rhamnolipid-producing strain of Pseudomonas aeruginosa GL1 was isolated from a bacterial community growing on a mixture of polycyclic aromatic hydrocarbons (PAH) as sole carbon source. Strain GL1 did not grow on PAH but grew on known degradation metabolites of phenanthrene ( o -phthalic acid) and of naphthalene (salicylic acid). In co-culture with a phenanthrene-degrading strain, Ps. aeruginosa GL1 accelerated the degradation of phenanthrene. Strain GL1 was resistant to toxic amphiphilic compounds such as cationic and anionic detergents. Rhamnolipid production took place in a late stage growth in cultures of strain GL1 on glycerol or n -hexadecane. It coincided with a substantial decrease in cell hydrophobicity and with morphological changes of the outer membrane as observed by transmission electronic microscopy. The rhamnolipids produced inhibited the growth of bacteria such as Rhodococcus erythropolis , Bacillus cereus and Ps. fluorescens . The overall results suggested an outer membrane origin for the rhamnolipids. They also indicate that the utilization of PAH metabolites by strain GL1 is important for the stability of the PAH-degrading community.  相似文献   

5.
The effects of various concentrations of sulfate, organic sulfur, and organic carbon on sulfate uptake by aerobic bacteria were studied using pure cultures growing in a defined medium. Cultures of Pseudomonas fluorescens and Corynebacterium striatum took up sulfate faster when young, but sulfate uptake by Serratia marcescens was faster in older cultures. Organic sulfur was found to decrease sulfate uptake, but at concentrations somewhat higher than occurs in most natural freshwater ecosystems. Low levels of sulfate can theoretically directly limit bacterial biomass production but such limitation probably does not occur in natural systems. Evidence is presented which indirectly links the uptake of sulfate and organic carbon, adding credibility to the proposal that sulfate uptake can be used as an indicator of microbial biomass production in freshwater ecosystems.  相似文献   

6.
The yield from glucose of ammonia-grown carbon-limited continuous cultures of Penicillium stipitatum was ca. 20% higher than that of nitrate-grown cultures at all growth rates examined. However, the yield from oxygen was similar during growth on both nitrogen sources. Under phosphate limitation the specific rate of gluconic acid and stipitatic acid production increased with growth rate, but the former product accounted for virtually 100% of the excreted carbon. Stipitatic acid was not produced under nitrogen limitation, and glucose supplied to the culture in excess of that required for growth was virtually quantatively converted into gluconic acid. Productivities of 11.4 g gluconic acid/L/h were stably maintained in continuous culture. Under conditions of glucose excess the enzyme glucose oxidase was excreted into the culture. The specific activity of this extracellular enzyme increased when the input glucose concentration to the culture was progressively increased. The excretion of a protein under nitrogen limitation suggests that this enzyme plays an important role under these conditions. Indeed, it was demonstrated that nitrogen-limited cultures did not overmetabolize gluconate at either pH 6.5 or 3.5, although up to 29 g/L gluconate was present in the culture. The Y(gluconate) and YO(2) of C- and N-limited gluconate-grown cultures were similar indicating that the rapid conversion of glucose to gluconate probably affords a means of regulating carbon flow in this organism. Nitrogen-limited cultures of P. stipitatum overmetabolized glucose to a much greater extent than acetate, fructose, or gluconate.  相似文献   

7.
A Gram-negative bacterial strain designated LS2 isolated from Lahaul–Spiti valley of North India was shown to produce pink pigment while utilizing methanol as sole source of carbon and energy. Interestingly, pigment production was inducible in nature since the organism did not produce any pigment when grown on other carbon sources. Based on phenotypic and phylogenetic characterization the non-pigmented methylotroph was identified as a novel strain of Acinetobacter lwoffii MTCC 8288 (DQ144736). By means of spectral and mass analyses the pigment was characterized as bacterioruberin-like carotenoid molecule. Here, the carotenoid pigment may form an important part of the antioxidant defense mechanism against oxidative stress imparted by methanol. The methanol utilization pathway in strain LS2 was deciphered by showing the presence of functional methanol dehydrogenase and formaldehyde dehydrogenase genes. In addition, to investigate methanol induced physiological changes, comparative fatty acid profile was analysed and distinctive qualitative as well as quantitative differences in fatty acid content were observed. Therefore, we suggest that strain LS2 exhibiting such unique phenotypic property should be assigned a taxonomic position other than the pigmented and non-pigmented methylotrophs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Pigment production from tryptophan by an Achromobacter species   总被引:1,自引:1,他引:0       下载免费PDF全文
Duerre, John A. (University of North Dakota, Grand Forks), and Patrick J. Buckley. Pigment production from tryptophan by an Achromobacter species. J. Bacteriol. 90:1686-1691. 1965.-A microorganism was isolated from the soil near the University of North Dakota. Biochemical and morphological characteristics indicated that this organism would best be classified as a member of the family Achromobacteraceae, genus Achromobacter, species unknown. The organism produced a red pigment when grown in a medium containing yeast extract and tryptophan. The pH optimum for pigment production was about 8.0 and the optimal temperature was 25 C. During a study of the nutritional requirements for growth and pigment production, it was found that the organism would grow and produce pigment in a medium containing tryptophan and nucleosides, but the rate of both growth and pigment formation in this medium was slower than that observed with tryptophan and yeast extract. The organism grew well in the presence of acid-hydrolyzed casein and nucleosides without producing pigment, indicating that the pigment is not necessary for growth. Resting-cell experiments definitely established tryptophan as the sole exogenous requirement for pigment production. The pigment was extracted from yeast extract-tryptophan medium with chloroform. Thin layer chromatographic analysis of the crude pigment extracted from this medium revealed the presence of two other pigments in addition to the major red pigment. One of these was a highly fluorescent orange pigment and the other a pink pigment. Only the red pigment was produced by resting cells in the presence of tryptophan alone. This pigment served as an electron acceptor when coupled with formic dehydrogenase, indicating its possible function as an oxidation-reduction pigment. The oxidized pigment had absorption peaks at 506 and 304 mmu. The peak at 506 mmu disappeared upon reduction with sodium sulfite. Shaking the reduced pigment in air proved to be an unsatisfactory method for returning the reduced pigment to the oxidized, colored state.  相似文献   

9.
In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin.  相似文献   

10.
The effect of pH and nitrogen source on pigment production by Monascus purpureus 192F using glucose as the carbon and energy source, was studied in pH-controlled, batch fermentor cultures using HPLC analysis to determine individual pigment concentrations. A maximum of four pigments were detected in fungal extracts. These were the yellow pigments monascin and ankaflavin, the orange rubropunctatin and the red pigment monascorubramine. Monascorubramine was present as the major product in all instances. Fungal growth and ankaflavin synthesis were favoured at low pH (pH 4.0), whereas production of the other pigments was relatively independent of pH. The nature of the nitrogen source affected fungal growth and pigment production, independent of pH. Ammonium and peptone as nitrogen sources gave superior growth and pigment concentrations compared to nitrate. Ankaflavin was not detected in nitrate cultures. The highest red pigment production was obtained using a glucose-peptone medium at pH 6.5, due to the secretion of red pigments into the medium under these conditions. Correspondence to: M. R. Johns  相似文献   

11.
Some factors influencing the production of an extracellular proteinase by Pseudomonas fluorescens NCDO 2085 were studied. Proteinase production was optimal at 20C and pH 69 in static culture when calcium was included in the medium. Proteinase was not detectable in basal medium but could be induced by organic nitrogen compounds. The proteinase was produced in the exponential phase of growth on protein substrates but not until early stationary phase during growth on amino acids. The organism did not utilize lactose, the most abundant carbohydrate in milk. Citrate was readily utilized as an energy source but had a strong repressive effect on proteinase production. A medium containing sodium caseinate and pyruvate supported good growth and enzyme production. All the amino acids utilized as a sole carbon source, with the exception of serine, could induce proteinase production. Asparagine was the most effective amino acid inducer. Particular combinations of amino acids could induce or repress proteinase production. The regulation of proteinase production by Ps. fluorescens NCDO 2085 appears to be based on a balance between induction by low concentrations of low molecular weight degradation products and sensitivity to end product catabolite repression. The results suggest that the function of the proteinase is to ensure a supply of carbon rather than amino acids for protein synthesis.  相似文献   

12.
Some factors influencing the production of an extracellular proteinase by Pseudomonas fluorescens NCDO 2085 were studied. Proteinase production was optimal at 20 degrees C and pH 6.9 in static culture when calcium was included in the medium. Proteinase was not detectable in basal medium but could be induced by organic nitrogen compounds. The proteinase was produced in the exponential phase of growth on protein substrates but not until early stationary phase during growth on amino acids. The organism did not utilize lactose, the most abundant carbohydrate in milk. Citrate was readily utilized as an energy source but had a strong repressive effect on proteinase production. A medium containing sodium caseinate and pyruvate supported good growth and enzyme production. All the amino acids utilized as a sole carbon source, with the exception of serine, could induce proteinase production. Asparagine was the most effective amino acid inducer. Particular combinations of amino acids could induce or repress proteinase production. The regulation of proteinase production by Ps. fluorescens NCDO 2085 appears to be based on a balance between induction by low concentrations of low molecular weight degradation products and sensitivity to end product catabolite repression. The results suggest that the function of the proteinase is to ensure a supply of carbon rather than amino acids for protein synthesis.  相似文献   

13.
During growth of the freshwater cyanobacteria, Oscillatoria sp. BTCC/A0004, and Scytonema sp. TISTR 8208, a pink pigment is released into the growth medium. The pigment from each source had a molecular weight of approximately 250 kDa and had adsorption maxima at 560 and 620 nm. These results suggest that pink pigment is a phycoerythrin-like protein. It inhibited the growth of green algae, Chlorella fusca and Chlamydomonas reinhardtii, but not other cyanobacteria or true bacteria. The concentration at which growth inhibition 50% occurred was 0.5, 6 and more than 10 mg ml−1, respectively.  相似文献   

14.
The influence of the growth rate on outer membrane protein composition and enterobactin production was studied with Klebsiella pneumoniae grown under conditions of iron limitation in chemostats. More enterobactin was produced at fast (D = 0.4 h-1) and slow (D = 0.1 h-1) growth rates in continuous cultures than in either logarithmic- or stationary-phase batch cultures. When the growth rate was controlled under conditions of carbon limitation and the iron level was reduced to 0.5 microM, the iron-regulated outer membrane proteins and enterobactin were induced at the fast growth rate. At the slow growth rate, although the iron-regulated outer membrane proteins were barely visible, a significant level of enterobactin was still produced. These results suggest that under conditions of either carbon or iron limitation, the growth rate can influence the induction of the high-affinity iron uptake system of K. pneumoniae. Other outer membrane proteins, including a 39-kilodalton peptidoglycan-associated protein, were found to vary with the growth rate and nutrient limitation.  相似文献   

15.
Summary From a metabolic point of view, sodium propionate and sodium caprylate in sub-fungistatic concentrations, manifest some interesting effects upon the metabolism, fatty acid synthesis, and pigmentogenesis ofTrichophyton rubrum in its earlier growth phases.Propionate at the higher concentration and caprylate inhibit growth as measured by mycelial dry weight.The higher concentration of propionate suppressed pigment production but a yellow pigment, apparently differing from others previously described, was observed consistently in cultures with the lower concentration of the salt.Caprylate in the concentration tested resulted in a culture in which fatty acid concentration was significantly decreased, however, there appears to be no correlation between fatty acid content depression and mycelial dry weight.Data on fatty acid composition suggest that propionate, an odd-numbered carbon chain fatty acid, diverts synthesis of even-numbered carbon chain fatty acids to the odd-numbered ones.  相似文献   

16.
The effect of different levels of salt, sodium nitrite, polyphosphate and various sugars on growth, pigment production, protease activity and culture pH caused by Monascus purpureus was studied in broth medium and ground meat. The addition of sodium chloride (> 50.0 g l(-1)) and polyphosphate (> 3.0g l(-1)) to broth medium decreased mycelial growth, pigment production and protease activity of M. purpureus, whereas low concentrations of sodium nitrite (< 0.2 g l(-1)) promoted mycelial growth and pigment production. When the basal medium and ground meat contained salt, 150.0 g l(-1), the mould growth was stopped. The medium with fructose as carbon source proved to be the most suitable for mycelium growth and pigment production, with maltose and glucose being the second most productive. When sucrose and lactose were used as carbon sources, mycelium growth and pigment production were inhibited but the protease activity increased significantly. The mould showed more tolerance to salt and polyphosphate in ground meat than in broth medium and used sucrose as a carbon source as well as glucose for growth and pigment production in the meat mixture.  相似文献   

17.
The growth process of Lactobacillus curvatus colonies was quantified by a coupled growth and diffusion equation incorporating a volumetric rate of lactic acid production. Analytical solutions were compared to numerical ones, and both were able to predict the onset of interaction well. The derived analytical solution modeled the lactic acid concentration profile as a function of the diffusion coefficient, colony radius, and volumetric production rate. Interaction was assumed to occur when the volume-averaged specific growth rate of the cells in a colony was 90% of the initial maximum rate. Growth of L. curvatus in solid medium is dependent on the number of cells in a colony. In colonies with populations of fewer than 10(5) cells, mass transfer limitation is not significant for the growth process. When the initial inoculation density is relatively high, colonies are not able to grow to these sizes and growth approaches that of broth cultures (negligible mass transfer limitation). In foods, which resemble the model solid system and in which the initial inoculation density is high, it will be appropriate to use predictive models of broth cultures to estimate growth. For a very low initial inoculation density, large colonies can develop that will start to deviate from growth in broth cultures, but only after large outgrowth.  相似文献   

18.
The metabolic fluxes of central carbon metabolism were measured in chemostat-grown cultures of Methylobacterium extorquens AM1 with methanol as the sole organic carbon and energy source and growth-limiting substrate. Label tracing experiments were carried out using 70% (13)C-methanol in the feed, and the steady-state mass isotopomer distributions of amino acids derived from total cell protein were measured by gas chromatography coupled to mass spectrometry. Fluxes were calculated from the isotopomer distribution data using an isotopomer balance model and evolutionary error minimization algorithm. The combination of labeled methanol with unlabeled CO(2), which enters central metabolism in two different reactions, provided the discriminatory power necessary to allow quantification of the unknown fluxes within a reasonably small confidence interval. In wild-type M. extorquens AM1, no measurable flux was detected through pyruvate dehydrogenase or malic enzyme, and very little flux through alpha-ketoglutarate dehydrogenase (1.4% of total carbon). In contrast, the alpha-ketoglutarate dehydrogenase flux was 25.5% of total carbon in the regulatory mutant strain phaR, while the pyruvate dehydrogenase and malic enzyme fluxes remained insignificant. The success of this technique with growth on C(1) compounds suggests that it can be applied to help characterize the effects of other regulatory mutations, and serve as a diagnostic tool in the metabolic engineering of methylotrophic bacteria.  相似文献   

19.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.  相似文献   

20.
Brief exposure of Beta vulgaris root cultures to acidic medium resulted in release of betalain pigments while the capability for regrowth and continued pigment accumulation was retained. A 10-min exposure to pH 2 followed by return to standard growth medium (pH 5.5, 1.1 mM PO4) resulted in release of 0.59 mg pigment/g dry weight over the subsequent 24-h period. The released pigment corresponds to 36.8% of the total pigments. Further improvement in culture productivity was achieved through phosphate limitation. Specific pigment productivity increased fivefold for cultures grown in phosphate-free medium as compared to cultures grown in control medium (1.1 mM PO4). A maximum total pigment production of 25.2 mg/l was observed at an initial medium phosphate level 0.3 mM. When combined with phosphate limitation, low pH facilitated the release of 3.03 mg pigment/g dry weight, which corresponds to 50% of the total pigment. The permeabilized roots were capable of regrowth and continued pigment accumulation. A cytochemical assay for respiratory activity revealed that the basis of regrowth was lateral root initials that were unaffected during the acidic pH treatment. Received: 16 December 1997 / Received revision: 7 May 1998 / Accepted: 16 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号