首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GTPase activating protein, p120GAP, contains an amino acid sequence motif called the Ca2+-dependent lipid binding domain (CaLB) which mediates a protein-protein interaction between p120GAP and annexin VI and also binds to negatively charged phospholipids. Because membrane association of p120GAP is important for the regulation of p21 Ras activity, we have studied the roles played by Ca2+, phospholipids and annexin VI in the membrane association of p120GAP. Here we demonstrate that a truncated CaLB domain GST fusion protein (GSTGAP618-632), lacking the ability to bind to phospholipids, is able to bind to rat fibroblast membranes in a Ca2+- and concentration-dependent manner. In addition, this fusion protein also binds to annexin VI in an amino acid sequence specific but Ca2+ independent manner. Also, when bound to annexin VI in the presence of Ca2+, this fusion protein has the ability to co-bind to phosphatidylserine vesicles. Thus, annexin VI may simultaneously mediate an interaction with p120GAP and also an interaction with membrane phospholipids. This may in part explain the mechanism by which p120GAP associates with membranes in response to Ca2+ elevation and suggests the potential importance of annexin VI in the regulation of p21 Ras and the role CaLB domains may play in the specific recognition of cellular membranes.  相似文献   

2.
Chow A  Davis AJ  Gawler DJ 《FEBS letters》2000,469(1):88-92
p120(GAP) (RasGAP) has been proposed to function as both an inhibitor and effector of Ras. Previously we have shown that RasGAP contains a C2 domain which mediates both Ca(2+)-dependent membrane association and protein-protein interactions. Specifically, three proteins have been isolated in a complex with the C2 domain of RasGAP; these are the Ca(2+)-dependent lipid binding protein annexin VI (p70) and two previously unidentified proteins, p55 and p120. Here we provide evidence that p55 is the Src family kinase Fyn and p120 is the focal adhesion kinase family member Pyk2. In addition, in vitro binding assays indicate that Fyn, but not Pyk2 binds directly to annexin VI. Finally, co-immunoprecipitation studies in Rat-1 fibroblasts confirm that Fyn, Pyk2, annexin VI and RasGAP can form a protein complex in mammalian cells.  相似文献   

3.
The essential Saccharomyces cerevisiae regulatory protein Rap1 contains two tandem Myb-like DNA binding sub-domains that interact with two defined DNA "hemisites", separated by a trinucleotide linker sequence. We have mapped the thermodynamically defined DNA-binding site of Rap1 by a primer extension method coupled with electrophoretic separation of bound and unbound DNAs. Relative to published consensus sequences, we detect binding interactions that extend 3 bp beyond the 5'-end of the putative DNA-binding site. This new site of interaction is located where the DNA minor groove faces the protein, and may account for the major DNA bending induced by Rap1p that previous studies have mapped to a site immediately upstream of the consensus binding site. In addition, we show that a minimal DNA-binding site made of one single consensus hemisite, preceded or followed by a spacer trinucleotide that interacts with the unstructured protein linker between the two Rap1p DNA binding domains, is able to bind the protein, although at lower affinity. These findings may explain the observed in vivo binding properties of Rap1p at many promoters that lack canonical binding sites.  相似文献   

4.
Pleckstrin homology domains are structurally conserved functional domains that can undergo both protein/protein and protein/lipid interactions. Pleckstrin homology domains can mediate inter- and intra-molecular binding events to regulate enzyme activity. They occur in numerous proteins including many that interact with Ras superfamily members, such as p120 GAP. The pleckstrin homology domain of p120 GAP is located in the NH(2)-terminal, noncatalytic region of p120 GAP. Overexpression of the noncatalytic domains of p120 GAP may modulate Ras signal transduction pathways. Here, we demonstrate that expression of the isolated pleckstrin homology domain of p120 GAP specifically inhibits Ras-mediated signaling and transformation but not normal cellular growth. Furthermore, we show that the pleckstrin homology domain binds the catalytic domain of p120 GAP and interferes with the Ras/GAP interaction. Thus, we suggest that the pleckstrin homology domain of p120 GAP may specifically regulate the interaction of Ras with p120 GAP via competitive intra-molecular binding.  相似文献   

5.
Phosphorylation of the Ca2+ and membrane-binding protein annexin 1 by epidermal growth factor (EGF) receptor tyrosine kinase has been thought to be involved in regulation of the EGF receptor trafficking. To elucidate the interaction of annexin 1 during EGF receptor internalization, we followed the distribution of annexin 1-GFP fusion proteins at sites of internalizing EGF receptors. The observed association of annexin 1 with EGF receptors was confirmed by immunoprecipitation. We found that this interaction was independent of a functional phosphorylation site in the annexin 1 N-terminal domain but mediated through the Ca2+ binding core domain.  相似文献   

6.
We have previously reported that wild-type p53 can bind single-stranded (ss) DNA ends and catalyze renaturation of ss complementary DNA molecules. Here we demonstrate that p53 can also bind to internal segments of ss DNA molecules via a binding site (internal DNA site) distinct from the binding site for DNA ends (DNA end site). Using p53 deletion mutants, the internal DNA site was mapped to the central region (residues 99-307), while the DNA end site was mapped to the C-terminal domain (residues 320-393) of the p53 protein. The internal DNA site can be activated by the binding of ss DNA ends to the DNA end site. The C-terminal domain alone was sufficient to catalyze DNA renaturation, although the central domain was also involved in promotion of renaturation by the full-length protein. Our results suggest that the interaction of the C-terminal tail of p53 with ss DNA ends generated by DNA damage in vivo may lead to activation of non-specific ss DNA binding by the central domain of p53.  相似文献   

7.
Phosphorylation of some members of the annexin family of proteins may play a significant role in controlling their calcium-dependent interactions with membranes. Recent electron microscopic studies of annexin VI revealed that the protein's two core domains exhibit a great degree of flexibility and are able to undergo a relative conformational change that could potentially initiate contacts between membranes [Avila-Sakar, A. J., et al. (2000) J. Struct. Biol. 130, 54-62]. To assess the possibility of a regulatory role of phosphorylation in this behavior, the crystal structure of a phosphorylation-mimicking mutant (T356D in the flexible connector region of human annexin VI) was determined to 2.65 A resolution. When the mutant is compared to the wild-type annexin VI, subtle differences are seen at the site of the mutation, while larger changes are evident in one of the calcium-binding loops and in the presence of five calcium ions. Furthermore, biochemical studies provide evidence for additional conformational differences between the T356D and wild-type solution structures. Fluorescence emission and acrylamide quenching suggest a higher level of solvent exposure of Trp-343 in the connector region of T356D in the presence of calcium. Comparisons of retardation coefficients in native gel electrophoresis reveal that T356D has a more extended shape, while proteolytic studies show a greater accessibility of a trypsin cleavage site inside the linker region, indicating a conformation more open than the wild-type form. These data provide insights into a possible regulatory mechanism leading to a higher degree of flexibility and possibly a higher calcium binding affinity of annexin VI upon phosphorylation.  相似文献   

8.
We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We investigated the involvement of the p21ras-GTPase activating protein (GAP) in insulin-induced signal transduction. In cells overexpressing the insulin receptor, we did not observe association between GAP and the insulin receptor after insulin treatment nor the phosphorylation of GAP on tyrosine residues. However, after insulin treatment in the presence of the phosphotyrosine phosphatase inhibitor phenylarsine oxide (PAO), 5-10% of GAP was found to be associated with the insulin receptor, and, in addition, a fraction of total GAP was phosphorylated on tyrosine. Using in vitro binding we showed that the N-terminal part of GAP containing the src-homology domains 2 and 3 (SH2-SH3-SH2 region) is involved in binding to the autophosphorylated insulin receptor beta-chain. In vitro binding between GAP and the autophosphorylated insulin receptor occurred independently of PAO pretreatment. These results suggest that GAP can transiently interact with the insulin receptor after insulin treatment, and this interaction is arrested after PAO pretreatment.  相似文献   

10.
S100A11 is a homodimeric EF-hand calcium binding protein that undergoes a calcium-induced conformational change and interacts with the phospholipid binding protein annexin I to coordinate membrane association. In this work, the solution structure of apo-S100A11 has been determined by NMR spectroscopy to uncover the details of its calcium-induced structural change. Apo-S100A11 forms a tight globular structure having a near antiparallel orientation of helices III and IV in calcium binding site II. Further, helices I and IV, and I and I', form a more closed arrangement than observed in other apo-S100 proteins. This helix arrangement in apo-S100A11 partially buries residues in helices I (P3, E11, A15), III (V55, R58, M59), and IV (A86, C87, S90) and the linker (A45, F46), which are required for interaction with annexin I in the calcium-bound state. In apo-S100A11, this results in a "masked" binding surface that prevents annexin I binding but is uncovered upon calcium binding.  相似文献   

11.
The Ras GTPase-activating protein p120GAP is a multidomain protein consisting of a variety of noncatalytic domains that may be involved in its regulation. RACK1 is a membrane-associated protein that binds the C2 domain of PKC and is related in sequence to the beta subunit of heterotrimeric G-proteins which has been implicated in binding to PH domains. Because p120GAP contains both PH and C2/CaLB domains we determined whether it is also a RACK1 binding protein. Coimmunoprecipitation experiments indicate that p120GAP associates with RACK1, whereas PH or C2/CaLB domain deletion mutants do not. A fusion protein containing the GAP PH domain bound to endogenous RACK1 in lysates in a concentration-dependent manner and directly associated with recombinant RACK1. Finally, serine/threonine phosphorylation appears to be involved in regulating this association. These results suggest that p120GAP and RACK1 interact in vivo in a manner dependent upon both the PH and C2/CaLB domains of GAP.  相似文献   

12.
ASAP family Arf GAPs induce the hydrolysis of GTP bound to the Ras superfamily protein Arf1, regulate cell adhesion and migration and have been implicated in carcinogenesis. The ASAP proteins have a core catalytic domain of PH, Arf GAP and Ank repeat domains. The PH domain is necessary for both biological and catalytic functions of ASAP1 and has been proposed to be integrally folded with the Arf GAP domain. Protection studies and analytical ultracentrifugation studies previously reported indicated that the domains are, at least partly, folded together. Here, using NMR spectroscopy and biochemical analysis, we have further tested this hypothesis and characterized the interdomain interaction. A comparison of NMR spectra of three recombinant proteins comprised of either the isolated PH domain of ASAP1, the Arf GAP and ankyrin repeat domain or all three domains indicated that the PH domain did interact with the Arf GAP and Ank repeat domains; however, we found a significant amount of dynamic independence between the PH and Arf GAP domains, consistent with the interactions being transient. In contrast, the Arf GAP and Ank repeat domains form a relatively rigid structure. The PH-Arf GAP domain interaction partially occluded the phosphoinositide binding site in the soluble protein, but binding studies indicated the PIP2 binding site was accessible in ASAP1 bound to a lipid bilayer surface. Phosphoinositide binding altered the conformation of the PH domain, but had little effect on the structure of the Arf GAP domain. Mutations in a loop of the PH domain that contacts the Arf GAP domain affected PIP2 binding and the K(m) and k(cat) for converting Arf1 GTP to Arf1 GDP. Based on these results, we generated a homology model of a composite PH/Arf GAP/Ank repeat domain structure. We propose that the PH domain contributes to Arf GAP activity by either binding to or positioning Arf1 GTP that is simultaneously bound to the Arf GAP domain.  相似文献   

13.
The type V TGF-beta receptor (TbetaR-V) plays an important role in growth inhibition by IGFBP-3 and TGF-beta in responsive cells. Unexpectedly, TbetaR-V was recently found to be identical to the LRP-1/alpha(2)M receptor; this has disclosed previously unreported growth regulatory functions of LRP-1. Here we demonstrate that, in addition to expressing LRP-1, all cells examined exhibit low affinity but high density acidic pH binding sites for LRP-1 growth regulatory ligands (TGF-beta(1), IGFBP-3, and alpha(2)M(*)). These sites, like LRP-1, are sensitive to receptor-associated protein and calcium depletion but, unlike LRP-1, are also sensitive to chondroitin sulfate and heparin and capable of directly binding ligands, which do not bind to LRP-1. Annexin VI has been identified as a major membrane-associated protein capable of directly binding alpha(2)M(*) at acidic pH. This is evidenced by: 1) structural and Western blot analyses of the protein purified from bovine liver plasma membranes by alpha(2)M(*) affinity column chromatography at acidic pH, and 2) dot blot analysis of the interaction of annexin VI and (125)I-alpha(2)M(*). Cell surface annexin VI is involved in (125)I-TGF-beta(1) and (125)I-alpha(2)M(*) binding to the acidic pH binding sites and (125)I-alpha(2)M(*) binding to LRP-1 at neutral pH as demonstrated by the sensitivity of cells to pretreatment with anti-annexin VI IgG. Cell surface annexin VI is also capable of mediating internalization and degradation of cell surface-bound (125)I-TGF-beta(1) and (125)I-alpha(2)M(*) at pH 6 and of forming ternary complexes with (125)I-alpha(2)M(*) and LRP-1 at neutral pH as demonstrated by co-immunoprecipitation. Trifluoperazine and fluphenazine, which inhibit ligand binding to the acidic pH binding sites, block degradation after internalization of cell surface-bound (125)I-TGF-beta(1) or (125)I-alpha(2)M(*). These results suggest that cell surface annexin VI may function as an acidic pH binding site or receptor and may also function as a co-receptor with LRP-1 at neutral pH.  相似文献   

14.
15.
X-linked inhibitor of apoptosis protein (XIAP)-associated factor 1 (XAF1) has been implicated as a novel tumor suppressor, which was proposed to exert pro-apoptotic effect by antagonizing the anticaspase activity of XIAP. Here, we delineated the domain architecture of XAF1 by applying limited proteolysis and peptide mass fingerprinting analysis. Our results indicated that XAF1 has a distinct domain organization, with a highly compact N-terminal domain (XAF1(NTD) ) followed by a middle domain (XAF1(MD) ), a 42-residue unstructured linker and a C-terminal domain (XAF1(CTD) ). The search of XIAP binding region within XAF1 revealed that a modest affinity XIAP(RING) binding site (dissociation constant, K(d) , ~18 μM) is located at the C-terminal portion of XAF1. This C-terminal region, embracing XAF1(CTD) and a flexible tail at C-terminus (residue Thr251-Ser301), is functionally identified as XIAP(RING) -binding domain of XAF1 (XAF1(RBD) ) in the present study. We have also mapped the interaction sites for XAF1(RBD) on XIAP(RING) by using NMR spectroscopy. By applying in vitro ubiquitination assay, we observed that XAF1(RBD) /XIAP interaction is essential for the ubiquitination of GST-XAF1(RBD) fusion protein. In addition, the C-terminal XAF1 fragment harboring XAF1(RBD) was found to be substantially ubiquitinated by XIAP(RING) . Base on these observations, we speculate a possible role of XAF1(RBD) in targeting XAF1 for XIAP-mediated ubiquitination.  相似文献   

16.
《The Journal of cell biology》1994,126(6):1445-1453
Ezrin, previously also known as cytovillin, p81, and 80K, is a cytoplasmic protein enriched in microvilli and other cell surface structures. Ezrin is postulated to have a membrane-cytoskeleton linker role. Recent findings have also revealed that the NH2-terminal domain of ezrin is associated with the plasma membrane and the COOH-terminal domain with the cytoskeleton (Algrain, M., O. Turunen, A. Vaheri, D. Louvard, and M. Arpin. 1993. J. Cell Biol. 120: 129-139). Using bacterially expressed fragments of ezrin we now demonstrate that ezrin has an actin-binding capability. We used glutathione-S-transferase fusion proteins of truncated ezrin in affinity chromatography to bind actin from the cell extract or purified rabbit muscle actin. We detected a binding site for filamentous actin that was localized to the COOH-terminal 34 amino acids of ezrin. No binding of monomeric actin was detected in the assay. The region corresponding to the COOH- terminal actin-binding site in ezrin is highly conserved in moesin, actin-capping protein radixin and EM10 protein of E. multilocularis, but not in merlin/schwannomin. Consequently, this site is a potential actin-binding site also in the other members of the protein family. Furthermore, the actin-binding site in ezrin shows sequence homology to the actin-binding site in the COOH terminus of the beta subunit of the actin-capping protein CapZ and one of the potential actin-binding sites in myosin heavy chain. The actin-binding capability of ezrin supports its proposed role as a membrane-cytoskeleton linker.  相似文献   

17.
The adenovirus type 5 (Ad5) early 1B (E1B) 55-kDa (E1B-55kDa)-E4orf6 protein complex has been implicated in the selective modulation of nucleocytoplasmic mRNA transport at late times after infection. Using a combined immunoprecipitation-immunoblotting assay, we mapped the domains in E1B-55kDa required for the interaction with the E4orf6 protein in lytically infected A549 cells. Several domains in the 496-residue 55-kDa polypeptide contributed to a stable association with the E4orf6 protein in E1B mutant virus-infected cells. Linker insertion mutations at amino acids 180 and 224 caused reduced binding of the E4orf6 protein, whereas linker insertion mutations at amino acid 143 and in the central domain of E1B-55kDa eliminated the binding of the E4orf6 protein. Earlier work showing that the central domain of E1B-55kDa is required for binding to p53 and the recent observation that the E4orf6 protein also interacts with the tumor suppressor protein led us to suspect that p53 might play a role in the E1B-E4 protein interaction. However, coimmunoprecipitation assays with extracts prepared from infected p53-negative H1299 cells established that p53 is not needed for the E1B-E4 protein interaction in adenovirus-infected cells. Using two different protein-protein interaction assays, we also mapped the region in the E4orf6 protein required for E1B-55kDa interaction to the amino-terminal 55 amino acid residues. Interestingly, both binding assays established that the same region in the E4orf6/7 protein can potentially interact with E1B-55kDa. Our results demonstrate that two distinct segments in the 55-kDa protein encoding the transformation and late lytic functions independently interact with p53 and the E4orf6 protein in vivo and provide further insight by which the multifunctional 55-kDa EIB protein can exert its multiple activities in lytically infected cells and in adenovirus transformation.  相似文献   

18.
Annexin VI is an abundant calcium- and phospholipid-binding protein whose intracellular distribution and function are still controversial. Using a highly specific antibody, we have studied the distribution of annexin VI in NRK fibroblasts and the polarized hepatic cell line WIF-B by confocal microscopy. In NRK cells, annexin VI was almost exclusively found associated with endocytic compartments, which were defined by their ability to receive fluid-phase marker internalized from the cell surface. However, extensive colocalization of annexin VI and the endocytic marker was only observed after about 45 min, indicating that annexin VI was primarily in late endocytic compartments or (pre)lysosomes. Consistent with this, annexin VI was predominantly seen on structures that contained the lysosomal protein lgp120, although not on dense core lysosomes by electron microscopy. Two major populations of annexin VI-containing structures were present in polarized WIF-B hepatocytes. One correlated to lgp120-positive (pre)lysosomes and was still observed after treatment with brefeldin A (BFA), while the other appeared to be partially associated with Golgi membranes and was BFA-sensitive. The striking association with prelysosomal compartments in NRK and WIF-B cells suggests that annexin VI could play a role in fusion events in the late endocytic pathway, possibly by acting as a tether between membranes.  相似文献   

19.
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) that translocates from the nucleus to the cytoplasm and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K and GAP, in vivo and in vitro. In the present work, we have further demonstrated the cytoplasmic localization of Sam68, which is increased in cells overexpressing IR. Besides, we sought to further study the association of Sam68 with the Ras-GAP pathway by assessing the interactions with SH3 domains of Grb2. We employed GST-fusion proteins containing the SH3 domains of Grb2 (N or C), and recombinant Sam68 for in vitro studies. In vivo studies of protein-protein interaction were assessed by co-immunoprecipitation experiments with specific antibodies against Sam68, GAP, Grb2, SOS, and phosphotyrosine; and by affinity precipitation with the fusion proteins (SH3-Grb2). Insulin stimulation of HTC-IR cells promotes phosphorylation of Sam68 and its association with the SH2 domains of GAP. Sam68 is constitutively associated with the SH3 domains of Grb2 and it does not change upon insulin stimulation, but Sam68 is Tyr-phosphorylated and promotes the association of GAP with the Grb2-SOS complex. In vitro studies with fusion proteins showed that Sam68 association with Grb2 is preferentially mediated by the C-terminal SH3 domains of Grb2. In conclusion, Sam68 is a substrate of the IR and may have a role as a docking protein in IR signaling, recruiting GAP to the Grb2-SOS complex, and in this way it may modulate Ras activity.  相似文献   

20.
Annexins are a multigene family of proteins involved in aggregation and fusion processes of biological membranes. One of its best-known members is annexin A2 (or p36), capable of binding to acidic phospholipids in a calcium-dependent manner, as occurs with other members of the same family. In its heterotetrameric form, especially with protein S100A10 (p11), annexin A2 has been involved as a determinant factor in innumerable biological processes like tumor development or anticoagulation. However, the subcellular coexistence of different pools of the protein, in which the monomeric form of annexin A2 is growing in functional relevance, is to date poorly described. In this work we present an exhaustive structural and functional characterization of monomeric human annexin A2 by using different recombinant mutants. The important role of the amphipathic N-terminal α-helix in membrane binding and aggregation has been analyzed. We have also studied the potential implication of lateral “antiparallel” protein dimers in membrane aggregation. In contrast to what was previously suggested, formation of these dimers negatively regulate aggregation. We have also confirmed the essential role of three lysine residues located in the convex surface of the molecule in calcium-free and calcium-dependent membrane binding and aggregation. Finally, we propose models for annexin A2-mediated vesicle aggregation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号