共查询到20条相似文献,搜索用时 0 毫秒
1.
Developmental genetics of the gastrulation defective locus in Drosophila melanogaster 总被引:2,自引:0,他引:2
The fs(1)gastrulation defective (dg) locus is one of the dorsal-group genes of Drosophila. Maternal expression of this gene is required for gastrulation movements and the differentiation of structures along the embryonic dorso-ventral axis. Twelve alleles of gd displayed a complex pattern of complementation, suggesting a direct interaction between subunits of a multimeric protein. Essential expression of the gd locus was strictly maternal with no zygotic contribution by the paternally derived allele. Clonal analysis revealed that expression of the gd locus was required in the germ line and that extreme dorsalization represented the null gd phenotype. Temperature-sensitive (ts) alleles displayed a ts period that included the last 4-5 hr of oogenesis and the first 1.5-2 hr of embryogenesis. Eggs from one ts allelic combination displayed reduced hatching when retained in the ovary at permissive temperatures, suggesting the loss of a labile egg component. This lability may also be responsible for the variable phenotypes displayed by offspring from individual females. 相似文献
2.
Interallelic complementation at the mouse Mitf locus 总被引:2,自引:0,他引:2
Steingrímsson E Arnheiter H Hallsson JH Lamoreux ML Copeland NG Jenkins NA 《Genetics》2003,163(1):267-276
3.
Chourey PS 《Genetics》1971,68(3):435-442
4.
5.
6.
7.
8.
Portin P 《Genetical research》2001,78(3):219-223
The mutant form of the intracellular asymmetrically localized Numb membrane-bound protein of Drosophila melanogaster suppresses the negative complementation of certain Abruptex (Ax) mutations of the Notch (N) locus encoding a transmembrane receptor protein in which the Ax mutations are mutations in the epidermal growth factor (EGF)-like repeats of the extracellular domain of the receptor. One model for how Ax mutants affect N function is that they are refractory to an antagonistic signal generated by an excess of N ligands. Genetically numb (nb) is an antagonist of N. In the absence of nb, cells follow the same fate as they would in the presence of a gain-of-function N allele, such as Ax. Numb has been shown to interact with the cytoplasmic domain of Notch. It is therefore suggested that numb counteracts the effect of Abruptex on Notch ligand binding, i.e. that Numb is an antagonist to the activation of the Notch signal generated by Notch ligands. Numb might accomplish this by interfering with the proteolytic cleavage of the Notch intracellular domain at the cell membrane. Thus, it seems possible that the mechanism of negative complementation of certain Ax mutants is the failure of this cleavage. Other possible mechanisms for negative complementation are also discussed. 相似文献
9.
10.
Transvection is a phenomenon wherein gene expression is effected by the interaction of alleles in trans and often results in partial complementation between mutant alleles. Transvection is dependent upon somatic pairing between homologous chromosome regions and is a form of interallelic complementation that does not occur at the polypeptide level. In this study we demonstrated that transvection could occur at the vestigial (vg) locus by revealing that partial complementation between two vg mutant alleles could be disrupted by changing the genomic location of the alleles through chromosome rearrangement. If chromosome rearrangements affect transvection by disrupting somatic pairing, then combining chromosome rearrangements that restore somatic pairing should restore transvection. We were able to restore partial complementation in numerous rearrangement trans-heterozygotes, thus providing substantial evidence that the observed complementation at vg results from a transvection effect. Cytological analyses revealed this transvection effect to have a large proximal critical region, a feature common to other transvection effects. In the Drosophila interphase nucleus, paired chromosome arms are separated into distinct, nonoverlapping domains. We propose that if the relative position of each arm in the nucleus is determined by the centromere as a relic of chromosome positions after the last mitotic division, then a locus will be displaced to a different territory of the interphase nucleus relative to its nonrearranged homolog by any rearrangement that links that locus to a different centromere. This physical displacement in the nucleus hinders transvection by disrupting the somatic pairing of homologous chromosomes and gives rise to proximal critical regions. 相似文献
11.
A study was undertaken to isolate mutations affecting the temporal appearance of kynurenine hydroxylase in Drosophila melanogaster. Such mutations, lacking or having reduced enzyme activity at the larval or pupal stage only, could represent changes in regulatory functions. Mutagenesis was carried out using EMS. Potential mutations were isolated from mass F1 cultures. The screening of large numbers of individuals was made possible by the use of the mutant red, which allowed visual classification for the presence or absence of the enzyme at both stages. From a series of six mutagenesis experiments 111,561 chromosomes were tested, and 122 phenotypically mutant F1 individuals were found. From these, 38 inheritable mutations were isolated which, by phenotypic observation, lacked or had reduced enzyme activity at the larval and pupal stages. Assay of enzyme activity levels in several of the mutants confirmed the phenotypic data. All of the 27 mutations that could be tested further are recessive and behave as cinnabar alleles. Complementation tests were performed between these 27 mutant stocks, and no complementation in the production of eye color has been seen between the mutants examined. When extended collection periods were used, a significantly higher percentage of inheritable mutations was isolated from the first 3 days of the screen. Over 80% of the F1 phenotypic mutants could be classified as mosaics, which indicates that cinnabar can be autonomous under certain conditions. The failure to isolate mutations in possible regulatory function is discussed. 相似文献
12.
13.
Partial reversion at the bobbed locus of Drosophila melanogaster 总被引:1,自引:0,他引:1
R Terracol Y Iturbide N Prud'Homme 《Biology of the cell / under the auspices of the European Cell Biology Organization》1990,68(1):65-71
In Drosophila melanogaster the tandemly arranged repetitive sequences coding for 18S and 28S rRNA are heterogenous at the level of the spacers between units and insertions that interrupt many 28S rRNA genes. This heterogeneity contrasts with the homogeneity of the regions transcribed into 18S and 28S rRNA. Homogenization and evolution of repetitive genes are usually explained by conversion, amplification events or unequal crossovers. In this paper we studied the change in rDNA patterns associated with partial reversion of bobbed mutations. In most cases, no increase in rDNA gene number, but a new repartition of gene types were found. 相似文献
14.
T. I. Gerasimova 《Molecular & general genetics : MGG》1983,190(3):390-393
Summary This is a detailed study of the reversions of the ct
MR2
allele putatively carrying á mobile element (MR-transposon) in the cut locus. Stable, unstable and superunstable revertants have been identified. Besides, a series of multiple unstable visible and lethal ct mutations derived from the ct
MR2
allele have been obtained. They are shown to include supermutable alleles. The results suggest that the MR-transposon is connected with at least three functions: excision; change of orientation; and change of position within the cut locus, these functions being disturbed in different ways in different unstable ct
+ and ct alleles. In some cases the mutant transitions are somehow strongly stimulated leading to superinstability, reaching the rate of 0.5. 相似文献
15.
D. P. Furman S. N. Rodin V. A. Ratner 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1979,55(5):231-238
Summary The functional expression of 12 scute alleles in homozygotes and compounds of Drosophila melanogaster at 14°, 22°, 30°C is analysed. Based on the data obtained, linear maps for bristles and mutations are built. The basic features of the maps, clustering and polarity, are invariable with respect to temperature, scute gene dosage and cross direction. In addition local dominance of the norm over bristle reduction was produced by the scute mutation; different types of complementation reactions were established for each bristle. The gene scute is treated as an operon-like system, composed of 3–4 cistrons with each controlling the formation of bristles on a particular region of the fly's body. This model argues well with the structure of maps constructed and implies a post-translational level of initial events of bristle-formation process.This paper is based on the report presented at XIV International Congress of Genetics (Moscow, August 1978) 相似文献
16.
Developmental analysis of fs(1)gastrulation defective,a dorsal-group gene of Drosophila melanogaster
Kenneth D. Konrad Thomas J. Goralski Anthony P. Mahowald 《Development genes and evolution》1988,197(2):75-91
Summary The gastrulation defective (gd) locus is a maternally expressed gene in Drosophila required for normal differentiation of structures along the embryonic dorso-ventral axis. Cuticular defects of the offspring from females with different combinations of gd alleles comprised a phenotypic continuum. Complementation among several alleles produced normal offspring while progressively more severe mutations produced a graded loss of structures from ventral, and then lateral, blastoderm cells. The most severely affected embryos consisted entirely of structures derived from dorsal blastoderm cells. Histological examination of staged siblings from selected allelic combinations showed that internal tissues were similarly affected. The tissues observed in amorphic embryos support new, more dorsal, assignments of fate map positions for blastoderm precursors of the cephalopharyngeal apparatus, hindgut and ventral nerve cord. The loss of ventral and lateral structures did not occur through cell death and appeared to involve a change in blastoderm cell fate. A direct effect of the mutations on blastoderm cell determination, however, was insufficient to explain the development of the dorsalized embryos. Intermediate phenotypes suggested that cell interactions or movements associated with morphogenesis are required for the determination of some cell fates in the dorsoventral axis. Thus, the developmental fate of all blastoderm cells may not be fixed at the time of blastoderm formation. 相似文献
17.
Dosage compensation at the sgs4 locus of Drosophila melanogaster 总被引:1,自引:0,他引:1
18.
A. Velayos M. I. Alvarez A. P. Eslava E. A. Iturriaga 《Molecular genetics and genomics : MGG》1998,260(2-3):251-260
Using 5-fluoroorotic acid (5-FOA) as a positive selection system we isolated mutants of Mucor circinelloides altered in the pyrimidine biosynthetic pathway. These mutants were found to be deficient either in orotidine-5′-monophosphate decarboxylase (OMPdecase), or in orotate phosphoribosyltransferase (OPRTase) activity. Complementation tests among mutants lacking OPRTase activity classified them into three groups, thus suggesting the possibility of interallelic complementation. To investigate this hypothesis a cDNA clone corresponding to the OPRTase-encoding gene of M. circinelloides was isolated by direct complementation of E. coli. The genomic copy transformed to prototrophy one member of each of the three classes of OPRTase-deficient mutants. We therefore concluded that they were all altered at the same locus, the pyrF locus. The corresponding alleles were cloned and sequenced. Comparisons of the amino acid sequence of M.?circinelloides OPRTase with those of E. coli and S.?typhimurium revealed a high degree of similarity in secondary and tertiary structure. As the two bacterial enzymes exist as dimers, a homodimeric quaternary structure of the M. circinelloides mature protein can be assumed. This would also explain the interallelic complementation between some pyrF mutants. The mutations found could affect either the active site or the structure of the dimer interface of the OPRTase. 相似文献
19.
The Drosophila protein Nanos encodes an evolutionarily conserved protein with two zinc finger motifs. In the embryo, Nanos protein function is required for establishment of the anterior-posterior body pattern and for the migration of primordial germ cells. During oogenesis, Nanos protein is involved in the establishment and maintenance of germ-line stem cells and the differentiation of oocyte precursor cells. To establish proper embryonic patterning, Nanos acts as a translational regulator of hunchback RNA. Nanos' targets for germ cell migration and development are not known. Here, we describe a selective genetic screen aimed at isolating new nanos alleles. The molecular and genetic analysis of 68 new alleles has allowed us to identify amino acids critical for nanos function. This analysis shows that the CCHC motifs, which coordinate two metal ions, are essential for all known functions of Nanos protein. Furthermore, a region C-terminal to the zinc fingers seems to constitute a novel functional domain within the Nanos protein. This "tail region" of Nanos is required for abdomen formation and germ cell migration, but not for oogenesis. 相似文献