首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lakes were surveyed to assess the potential patterns of latitudinalvariation in carbon:nitrogen:phosphorus (C:N:P) stoichiometryof lower food web components. Thirty-four lakes were surveyedat an arctic latitude (68°38'N, 149°38'W) and 10 lakesat a temperate latitude (46°13'N, 89°32'W) during 1997.The temperate data set was augmented with earlier survey resultsemploying similar methods. It was hypothesized that differencesin environmental variables across latitude would cause differencesin community C:N:P ratios, leading to differences in trophicinteractions. Physical measurements (light, temperature), sestonand zooplankton were collected from each lake. Seston and zooplanktonwere analyzed for C, N and P content, and zooplankton were countedand measured for biomass estimates. The degree of trophic interactionbetween seston and zooplankton was assessed by (i) measuringelemental imbalances between seston and zooplankton and (ii)calculating the potential recycling ratio by the zooplanktoncommunity available for seston. Seston C:nutrient, but not N:P,ratios were higher in temperate than arctic lakes. Conversely,arctic zooplankton had higher C:nutrient, but not N:P, ratiosthan zooplankton in temperate lakes. Elemental imbalances weregreater in temperate than in arctic lakes, but N:P stoichiometryof potential zooplankton recycling was nearly identical betweenthe two latitudes. Zooplankton community C:N:P ratios were notrelated to either latitude or seston C:N:P. In accordance withstoichiometric theory, relative abundances of calanoid copepodswere positively correlated with seston C:N in temperate lakes.Additionally, relative abundances of Daphnia were negativelycorrelated with seston C:N ratios in temperate and arctic lakes,and positively correlated with N:P ratios in the arctic. Ingeneral, these results suggest that seston and zooplankton communitystoichiometry differ across latitude, and these differenceshave the potential to affect trophic interactions.  相似文献   

2.
Many phytoplankton taxa function on multiple trophic levels by combining photosynthesis and ingestion of bacteria, termed mixotrophy. Despite the recognition of mixotrophy as a universal functional trait, we have yet to fully resolve how environmental conditions influence community grazing rates in situ. A microcosm study was used to assess bacterivory by mixotrophic nanoflagellates following nutrient enrichment and light attenuation in a temperate lake. We found contrasting results based on assessment of mixotroph abundance or bacterivory. Despite an interactive effect of nutrient enrichment and light attenuation on mixotroph abundance, significant differences within light treatments were observed only after enrichment with P or N + P. The greatest abundance of mixotrophs across treatments occurred under co-nutrient enrichment with full exposure to irradiance. However, bacterivory by mixotrophic nanoflagellates was greatest under shaded conditions after either N or P enrichment. We suggest that PAR availability dampened the stimulatory effect of nutrient limitation, and bacterivory supplemented a suboptimal photosynthetic environment. In a saturating light regime, the mixotrophic community was less driven to ingest bacteria because photosynthesis was able to satisfy energetic demands. These findings quantify community bacterivory in response to environmental drivers that may characterize future ecosystem conditions and highlight the importance of considering grazing rates in conjunction with abundance of mixotrophic protists.  相似文献   

3.
This article aims to test the light-nutrient hypothesis (LNH) in a periphytic community in a tropical black-water lake. Individual and interactive effects of light and nutrient availability were assessed with periphyton biomass accrual, nutrient content, and nutrient stoichiometry. We performed a manipulative field experiment with a 4 × 2 factorial design. We used nutrient diffusing substrates to produce four different nutrients treatments: Control (no nutrient added), nitrogen amended (N), phosphorus amended (P) and combined N and P amendment (NP). Two light levels were also considered: high light (near surface water) and low light (near bottom water). Light and nutrients individually and interactively caused significant changes in aggregate periphyton community properties. Total and autotrophic biomasses were significantly higher in high light conditions and in nutrient enriched treatments. Autotrophic biomass was significantly higher in N enriched treatment whereas total biomass was mainly affected by the joint addition of N and P. At lower light availability periphyton growth was limited, even in enriched treatments. Light also strongly affected periphyton nutrient content. Periphyton C, N and P in general increased when subjected to high light conditions. As predicted by the LNH, light promoted an increase in periphyton C:P ratios in P deprived treatments, but an opposite effect was observed on C:N ratios, especially in N-enriched treatments. This experiment revealed that light availability strongly limits the propagation of nutrient effects on periphyton growth. Such complex interdependencies on basal resources affect the proportion of autotrophic to total periphytic biomass that can be an important mechanism to explain variation in the nutrient stoichiometry of periphyton in nature.  相似文献   

4.
This study examines how nutrients and light affect the relationship between autotrophic biomass and non-autotrophic periphyton organic matter in a tropical black water lake biofilm community. We hypothesized that there is no positive correlation between autotrophic and non-autotrophic organic matter in the periphytic community of a black water humic lake, where non-algal components of periphyton can rely on carbon sources external to the periphyton matrix and where nutrient availability is low. Second, we sought to test our hypothesis that non-autotrophic periphyton organic matter will benefit from nutrient enhancement in a lake where the availability of DOC is high. We performed a field experiment using in situ lake mesocosms to manipulate nutrient concentrations and light availability in a 2 × 2 factorial design. Control treatments (no nutrient added) and nutrient treatments (N + P) were compared in different light conditions: high light (near surface water) and low light (near bottom). No positive correlation was found between autotrophic biomass and non-autotrophic periphyton organic matter, but a negative correlation was observed in high nutrient and light conditions. The low C:P and N:P ratios revealed that the non-autotrophic organic matter mostly comprised a heterotrophic microbial biofilm. High levels of light and nutrients together caused significant changes in periphyton community properties. The non-autotrophic periphyton organic matter was negatively affected by nutrient addition, whereas autotrophic biomass was positively affected, especially in high light conditions. Our results strongly suggest that non-autotrophic periphyton organic matter in a humic lake is primarily comprised of a bacterial biofilm that directly competes for nutrients with autotrophs in the periphytic community. We also observed no effect of nutrient addition on periphyton growing in light-limited conditions. These results suggest that heterotrophic periphytic organisms might experience carbon limitation despite the high availability, but usually low quality, of dissolved carbon in the water column of humic lakes.  相似文献   

5.
1. Field data from five unproductive Swedish lakes were used to investigate the occurrence of mixotrophic flagellates in relation to bacterioplankton, autotrophic phytoplankton, heterotrophic flagellates and abiotic environmental factors. Three different sources of data were used: (i) a 3‐year study (1995–97) of the humic Lake Örträsket, (ii) seasonal measurements from five lakes with widely varying dissolved organic carbon (DOC) concentrations, and (iii) whole lake enrichment experiments with inorganic nutrients and organic carbon. 2. Mixotrophic flagellates usually dominated over autotrophic phytoplankton in Lake Örträsket in early summer, when both bacterial production and light levels were high. Comparative data from the five lakes demonstrated that the ratio between the biomasses of mixotrophic flagellates and autotrophic phytoplankton (the M/A‐ratio) was positively correlated to bacterioplankton production, but not to the light regime. Whole lake carbon addition (white sugar) increased bacterial biomass, and production, reduced the biomass of autotrophs by a factor of 16, and increased the M/A‐ratio from 0.03 to 3.4. Collectively, the results indicate that the dominance of mixotrophs among phytoplankton was positively related to bacterioplankton production. 3. Whole lake fertilisation with nitrogen (N) and phosphorus (P) demonstrated that the obligate autotrophic phytoplankton was limited by N. N‐addition increased the biomass of the autotrophic phytoplankton but had no effect on mixotrophic flagellates or bacteria, and the M/A‐ratio decreased from 1.2 to 0.6 after N‐enrichment. Therefore, we suggest that bacteria under natural conditions, by utilising allochthonous DOC as an energy and carbon source, are able to outcompete autotrophs for available inorganic nutrients. Consequently, mixotrophic flagellates can become the dominant phytoplankters when phagotrophy permits them to use nutrients stored in bacterial biomass. 4. In Lake Örträsket, the biomass of mixotrophs was usually higher than the biomass of heterotrophs during the summer. This dominance could not be explained by higher grazing rates among the mixotrophs. Instead, ratios between mixotrophic and heterotrophic biomass (the M/H‐ratio) were positively related to light availability. Therefore, we suggest that photosynthesis can enable mixotrophic flagellates to outcompete heterotrophic flagellates.  相似文献   

6.
ABSTRACT We tested whether pelagic light and nutrient availability, metabolism, organic pools and CO2-supersaturation were related to lake size and surrounding forest cover in late summer–autumn measurements among 64 small (0.02–20 ha), shallow seepage lakes located in nutrient-rich, calcareous moraine soils in North Zealand, Denmark. We found a strong implicit scaling to lake size as light availability increased significantly with lake size while nutrient availability, phytoplankton biomass and dissolved organic matter declined. Forest lakes had significantly stronger net heterotrophic traits than open lakes as higher values were observed for light attenuation above and in the water, dissolved organic matter, pelagic community respiration (R) relative to maximum gross primary production (R/GPP) and CO2-supersaturation. Total-phosphorus was the main predictor of phytoplankton biomass (Chl) despite a much weaker relationship than observed in previous studies of larger lakes. Maximum gross primary production increased with algal biomass and decreased with dissolved organic matter, whereas community respiration increased with dissolved organic matter and particularly with gross primary production. These results suggest that exogenous organic matter supplements primary production as an energy source to heterotrophs in these small lakes, and particularly so in forest lakes experiencing substantial shading from the forest and dissolved humic material. This suggestion is supported by 20–30-fold CO2 supersaturation in the surface water of the smallest forest lakes and more than sixfold supersaturation in 75% of all measurements making these lakes among the most supersaturated temperate lakes examined so far.  相似文献   

7.
Nutrient control of bacterioplankton and phytoplankton dynamics   总被引:5,自引:0,他引:5  
To determine whether positive correlations between phytoplankton and bacterioplankton growth in nutrient addition experiments are due to growth coupling or growth stimulation by the same nutrients, we examined phyto- and bacterioplankton growth in a series of eleven nutrient addition (N × P) and light/dark experiments. In mesotrophic Castle Lake, the phyto- and bacterioplankton growth responses to phosphorus (P) addition were strongly correlated (r2=0.59), while only a weak correlation (r2=0.10) was observed for the nitrogen addition treatments. After normalizing the N + P treatments for the growth stimulation observed in the respective P treatments, we found a substantial stimulation of the phytoplankton (e.g., costimulation by N + P) and no stimulation of the bacterioplankton. Bacteria growth rates were similar in both light and dark incubated P treatments. In these experiments, we found clear evidence suggesting the dynamics of bacteria and phytoplankton were correlated because they are often limited by the same resource (mainly inorganic phosphorus). We found only limited evidence that bacterioplankton growth coupling to algal dynamics was occurring in these experiments. However, we did not consider several factors such as dissolved organic nutrient availability, bacterivory, availability of physical substrates, and temperature which are also thought to influence the nature of bacterial/phytoplankton interactions. Based on the results of our experiments, we conclude the biomass of the bacterio- and phytoplankton covaried because they were stimulated by the same nutrients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Levine  M.A.  Whalen  S.C. 《Hydrobiologia》2001,455(1-3):189-201
We used 54 enrichment bioassays to assess nutrient limitation (N, P) of 14C uptake by natural phytoplankton assemblages in 39 lakes and ponds in the Arctic Foothills region of Alaska. Our purpose was to categorize phytoplankton nutrient status in this under-represented region of North America and to improve our ability to predict the response of primary production to anticipated anthropogenically mediated increases in nutrient loading. Experiments were performed across several watersheds and included assays on terminal lakes and lakes occupying various positions in chains (lakes in series within a watershed and connected by streams). In total, 89% (48 of 54) of the bioassays showed significant stimulation of 14C primary production by some form of nutrient addition relative to unamended controls. A significant response was observed following enrichment with N and P, N alone and P alone in 83, 35 and 22% of the bioassays, respectively. In experiments where N and P proved stimulatory, the influence of N alone was significantly greater than the influence of P alone. Overall, the data point to a greater importance for N than P in regulating phytoplankton production in this region. The degree of response to N and P enrichment declined as the summer progressed and showed no relationship to irradiance or water temperature, suggesting secondary limitation by some micronutrient such as iron as the summer advanced. Phytoplankton nutrient status was often consistent across lakes within a watershed, suggesting that watershed characteristics influence nutrient availability. Lakes in this region will clearly show increased phytoplankton production in response to anthropogenic activities and anticipated changes in climate that will increase nutrient loading.  相似文献   

9.
Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations. However, when taking into account also a predicted higher temperature there is a risk of higher frequency and abundance of potentially toxic cyanobacteria in lakes and they may stay longer during the season. Somewhat higher risk of loss of submerged macrophytes at increased N and phosphorus (P) loading and a shift to dominance of small-sized fish preying upon the key grazers on phytoplankton may also enhance the risk of lake shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm temperate and arid climates. However, in warm arid lakes much higher N concentrations are currently observed despite reduced external loading. This is due to increased evapotranspiration leading to higher nutrient concentrations in the remaining water, but may also reflect a low-oxygen induced reduction of nitrification. Therefore, the critical N as well as P loading for good ecological state in lakes likely has to be lower in a future warmer climate in both north temperate and Mediterranean lakes. To obtain this objective, adaptation measures are required. In both climate zones the obvious methods are to change agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re-meandering of channelised streams, which may all have a large impact on, not least, the N loading of lakes. In the arid zone, also restrictions on human use of water are urgently needed, not least on the quantity of water used for irrigation purposes.  相似文献   

10.
Natural populations often show genetic variation in parasite resistance, forming the basis for evolutionary response to selection imposed by parasitism. We investigated whether previous epidemics selected for higher resistance to novel parasite isolates in a Daphnia galeatamicroparasite system by comparing susceptibility of host clones from populations with varying epidemic history. We manipulated resource availability to evaluate whether diet influences Daphnia susceptibility as epidemics are common in nutrient‐rich lakes. Exposing clones from 10 lakes under two food treatments to an allopatric protozoan parasite, we found that Daphnia originating from lakes (mainly nutrient rich) with previous epidemics better resist infection. Despite this result, there was a tendency of higher susceptibility in the low food treatment, suggesting that higher resistance of clones from populations with epidemic background is not directly caused by lake nutrient level. Rather, our results imply that host populations respond to parasite‐mediated selection by evolving higher parasite resistance.  相似文献   

11.
An in vitro nutrient addition bioassay was performed to testthe relative inorganic nitrogen (N) and phosphorus (P) limitationof phytoplankton in a Spanish karst lake (El Tejo) during thelast part of the stratification period, when nutrient limitationis most pronounced. Nutrient deficiency was tested in samplesfrom three different layers of the lake: the epilimnion, metalimnionand oxic hypolimnion. Nitrogen additions, either without orcombined with P, increased phytoplankton growth in all threestrata, compared with controls or P treatments. This showedthat N was the nutrient limiting phytoplankton growth in latesummer–early fall. Since both hypolimnetic diffusion andgroundwater fluxes of N-rich waters into the lake are much reducedduring summer, N becomes the limiting nutrient as stratificationadvances. We suggest that in this Mediterranean area with lowatmospheric deposition of anthropogenic N and in lakes relativelyfree of surface run-off, nutrient supply by atmospheric depositionmight be a key factor in controlling nutrient deficiency forphytoplankton growth.  相似文献   

12.
1. Aquatic herbivores typically have much higher concentrations of nutrients (e.g. N and P) in their tissues than there is in the food they eat. These stoichiometric differences can cause herbivores to be limited by the elemental quality of their food, which could affect, in turn, the structure of consumer communities and even alter key ecosystem processes. 2. In streams and in the littoral zone of shallow lakes, periphyton is an important food resource for benthic animals. Studying the elemental composition of periphyton may help us to understand food‐web structure, and any reciprocal effect of this structure on periphyton stoichiometry. 3. To understand how alterations in the food‐web structure affect the elemental composition of periphyton in a eutrophic lake, we carried out a long‐term experiment (14 months) in large‐scale mesocosms (40 m3), in which we manipulated food‐web structure, and which were dominated either by planktivorous fish (Rutilus rutilus) or herbivorous invertebrates (without fish). Periphyton was sampled monthly at three depths (0.5, 1.5 and 2.5 m) to determine its biomass and elemental composition (C/N/P ratio). Food‐web structure, physical and chemical parameters were monitored throughout the experiment. 4. Fish had indirect positive effect on periphyton biomass, leading to twofold higher levels than in herbivore‐dominated mesocosms. This result was probably due to control of benthic consumers by fish, suggesting a strong top–down control on periphyton by their consumers in fishless enclosures. 5. The elemental ratios C/P and C/N were lower in deep water in both treatments, mainly mediated by light availability, in accordance with the light/nutrient ratio hypothesis. These ratios were also lower in fishless treatments, probably due to increases in inorganic nutrient availability and grazing pressure in herbivore‐dominated systems. During winter, periphyton elemental composition was similar in both treatments, and was unrelated to inorganic nutrient availability. 6. These results indicate that any alteration of food‐web structure in lakes, such as in biomanipulation experiments, is likely to modify both the biomass and elemental quality of periphyton. Resultant effects on the consumers of periphyton and macrophytes could play a key role in the success of biomanipulations and should be taken into account in further studies.  相似文献   

13.
Bacterial grazing was measured from June to August 1995 in Lake Ortrasket, a deep brown-water lake in northern Sweden. Mixotrophic chrysophytes were the dominating bacterivores at all times, grazing 3-14% of bacterial standing stock daily. The effects of altered nutrient supply and light availability on grazing activity and growth were studied in two mesocosm experiments. Incubation in the dark did not stimulate phagotrophy, which would otherwise be expected if bacteria were mainly being used as an energy source. Furthermore, clearance rates were not reduced after alleviation of nutrient limitation conditions. Rather, phagotrophy may work as a relatively fixed attribute of the mixotrophic community in this lake. When availability of dissolved nutrients is restricted, phagotrophy permits the mixotrophs to outcompete other phytoplankton, but they become less competitive at high nutrient concentrations. The relative share of mixotrophs in relation to total phytoplankton decreased considerably after enrichment with nitrogen + phosphorus.   相似文献   

14.
Variation in nitrogen and phosphorus concentrations of wetland plants   总被引:11,自引:0,他引:11  
The use of nutrient concentrations in plant biomass as easily measured indicators of nutrient availability and limitation has been the subject of a controversial debate. In particular, it has been questioned whether nutrient concentrations are mainly species' traits or mainly determined by nutrient availability, and whether plant species have similar or different relative nutrient requirements. This review examines how nitrogen and phosphorus concentration and the N:P ratio in wetland plants vary among species and sites, and how they are related to nutrient availability and limitation. We analyse data from field studies in European non-forested wetlands, from fertilisation experiments in these communities and from growth experiments with wetland plants. Overall, the P concentration was more variable than the N concentration, while variation in N:P ratios was intermediate. Field data showed that the N concentration varies more among species than among sites, whereas the N:P ratio varies more among sites than among species, and the P concentration varies similarly among both. Similar patterns of variation were found in fertilisation experiments and in growth experiments under controlled nutrient supply. Nutrient concentrations and N:P ratios in the vegetation were poorly correlated with various measures of nutrient availability in soil, but they clearly responded to fertilisation in the field and to nutrient supply in growth experiments. In these experiments, biomass N:P ratios ranged from 3 to 40 and primarily reflected the relative availabilities of N and P, although N:P ratios of plants grown at the same nutrient supply could vary three-fold among species. The effects of fertilisation with N or P on the biomass production of wetland vegetation were well related to the N:P ratios of the vegetation in unfertilised plots, but not to N or P concentrations, which supports the idea that N:P ratios, rather than N or P concentrations, indicate the type of nutrient limitation. However, other limiting or stressing factors may influence N:P ratios, and the responses of individual plant species to fertilisation cannot be predicted from their N:P ratios. Therefore, N:P ratios should only be used to assess which nutrient limits the biomass production at the vegetation level and only when factors other than N or P are unlikely to be limiting.  相似文献   

15.
16.
1. Oligotrophic softwater lakes represent a special type of aquatic ecosystem with unique plant communities where generalisations from other aquatic plant communities to rising CO2 in the water column may not apply. 2. In the present study, we set up large in situ mesocosms and supporting laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field and the laboratory did not show any significant release of nutrients to the water column from plants or sediments at any of the light or CO2 treatments. However, mats of epiphytic algae developed from the beginning of June to late September and caused a light reduction for the isoetid vegetation. 5. Increasing CO2 concentrations in the water column may over time potentially result in a change in soft water plant communities.  相似文献   

17.
Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long‐term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal‐scale monitoring records from north temperate‐subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce , (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce . Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio‐temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate‐subarctic regions.  相似文献   

18.
1. Chronic nitrogen (N) deposition may alter the bioavailability of dissolved organic matter (DOM) in streams by multiple pathways. Elevated N deposition may alter the nutrient stoichiometry of DOM as well as nutrient availability in stream water. 2. We evaluated the influence of a decadal‐scale experimental N enrichment on the relative importance of DOM nutrient content and inorganic nutrient availability on the bioavailability of DOM. We measured the consumption of dissolved organic carbon (DOC) and changes in nutrient concentration, DOM components and enzyme activity in a bottle incubation assay with different DOM and nutrient treatments. To evaluate the effect of DOM stoichiometry, we used leaf leachates of different carbon/N/phosphorus (C : N :P) ratio, made from leaf litter sourced in the reference and N‐enriched catchments at the Bear Brook Watershed in Maine (BBWM). We also manipulated the concentration of inorganic N and P to compare the effect of nutrient enrichment with DOM stoichiometry. 3. DOC from the N‐enriched catchment was consumed 14% faster than that from the reference catchment. However, mean DOC consumption for both leachates was more than doubled by the simultaneous addition of N and P, compared to controls, while the addition of N or P alone increased consumption by 42 and 23%, respectively. The effect of N and/or P enrichment consistently had a greater effect than DOM source for all response variables considered. 4. We subsequently conducted DOC uptake measurements using leaf leachate addition under ambient and elevated N and P in the streams draining the reference and N‐enriched catchments at BBWM. In both streams, DOC uptake lengths were shorter when N and P were elevated. 5. Although both DOM stoichiometry and inorganic nutrient availability affect DOM bioavailability, N and P co‐limitation appears to be the dominant driver of reach‐scale processing of DOM.  相似文献   

19.
Dickman EM  Vanni MJ  Horgan MJ 《Oecologia》2006,149(4):676-689
The stoichiometric composition of autotrophs can vary greatly in response to variation in light and nutrient availability, and can mediate ecological processes such as C sequestration, growth of herbivores, and nutrient cycling. We investigated light and nutrient effects on phytoplankton stoichiometry, employing five experiments on intact phytoplankton assemblages from three lakes varying in productivity and species composition. Each experiment employed two nutrient and eight irradiance levels in a fully factorial design. Light and nutrients interactively affected phytoplankton stoichiometry. Thus, phytoplankton C:N, C:P, and N:P ratios increased with irradiance, and slopes of the stoichiometric ratio versus irradiance relationships were steeper with ambient nutrients than with nutrients added. Our results support the light–nutrient hypothesis, which predicts that phytoplankton C:nutrient ratios are functions of the ratio of available light and nutrients; however, we observed considerable variation among lakes in the expression of this relationship. Phytoplankton species diversity was positively correlated with the slopes of the C:N and C:P versus irradiance relationships, suggesting that diverse assemblages may exhibit greater flexibility in the response of phytoplankton nutrient stoichiometry to light and nutrients. The interactive nature of light and nutrient effects may render it difficult to generate predictive models of stoichiometric responses to these two factors. Our results point to the need for future studies that examine stoichiometric responses across a wide range of phytoplankton communities.  相似文献   

20.
Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé - RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号