首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Intracellular recording was used to investigate the modulatory effects of serotonin and octopamine on the identified synapses between filiform hair sensory afferents and giant interneurons in the first instar cockroach, Periplaneta americana. Serotonin at 10(-4) mol l(-1) to 10(-3) mol l(-1) reduced the amplitude of the lateral axon-to-ipsilateral giant interneuron 3 excitatory postsynaptic potentials. and octopamine at 10(-4) mol l(-1) increased their amplitude. Similar effects were seen on excitatory postsynaptic potentials in dorsal giant interneuron 6. Several lines of evidence suggest that both substances modulate the amplitude of excitatory postsynaptic potentials by acting presynaptically, rather than on the postsynaptic neuron. The fitting of simple binomial distributions to the postsynaptic potential amplitude histograms suggested that, for both serotonin and octopamine, the number of synaptic release sites was being modulated. Secondly, the amplitudes of miniature excitatory postsynaptic potentials recorded in the presence of tetrodotoxin were unaffected by either modulator. Finally, recordings from contralateral giant interneuron 3, which has two identifiable populations of synaptic inputs, showed that each modulator had a more pronounced effect on excitatory postsynaptic potentials evoked by the lateral axon than on those evoked by the medial axon. Immunocytochemistry confirmed that neuropilar processes containing serotonin are present in close proximity to these synapses.  相似文献   

2.
Presynaptic inhibition of neurotransmitter release is thought to be mediated by a reduction of axon terminal Ca2+ current. We have compared the actions of several known inhibitors of evoked glutamate release with the actions of the Ca2+ channel antagonist Cd2+ on action potential-independent synaptic currents recorded from CA3 neurons in hippocampal slice cultures. Baclofen and adenosine decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) without affecting the distribution of their amplitudes. Cd2+ blocked evoked synaptic transmission, but had no effect on the frequency or amplitude of either mEPSCs or inhibitory postsynaptic currents (IPSCs). Inhibition of presynaptic Ca2+ current therefore appears not to be required for the inhibition of glutamate release by adenosine and baclofen. Baclofen had no effect on the frequency of miniature IPSCs, indicating that gamma-aminobutyric acid B-type receptors exert distinct presynaptic actions at excitatory and inhibitory synapses.  相似文献   

3.
The effects of endogenous mu-opioid ligands, endomorphins, on Adelta-afferent-evoked excitatory postsynaptic currents (EPSCs) were studied in substantia gelatinosa neurons in spinal cord slices. Under voltage-clamp conditions, endomorphins blocked the evoked EPSCs in a dose-dependent manner. To determine if the block resulted from changes in transmitter release from glutamatergic synaptic terminals, the opioid actions on miniature excitatory postsynaptic currents (mEPSCs) were examined. Endomorphins (1 microM) reduced the frequency but not the amplitude of mEPSCs, suggesting that endomorphins directly act on presynaptic terminals. The effects of endomorphins on the unitary (quantal) properties of the evoked EPSCs were also studied. Endomorphins reduced unitary content without significantly changing unitary amplitude. These results suggest that in addition to presynaptic actions on interneurons, endomorphins also inhibit evoked EPSCs by reducing transmitter release from Adelta-afferent terminals.  相似文献   

4.
A most prominent feature of neurons in the suprachiasmatic nucleus (SCN) is the circadian rhythm in spontaneous firing frequency. To disclose synaptic mechanisms associated with the rhythmic activity, the spontaneous postsynaptic activity was studied using whole-cell, patch clamp recordings in the ventral region of the SCN in slice preparations from rats. The synaptic events were compared between two time intervals corresponding to the highest and lowest electrical activity within the SCN during subjective daytime and nighttime, respectively. The gamma-aminobutyric acid (GABA)-mediated spontaneous inhibitory activity showed no diurnal variations, but the excitatory activity was markedly higher in frequency, without differences in amplitude, during the subjective day compared to the subjective night. Spontaneous and evoked inhibitory synaptic events were blocked by the GABA(A) receptor antagonist bicuculline. The alpha-amino-hydroxy-5-methylisoxazole-4-propionic acid (AMPA/kainate) receptor antagonist 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) blocked most of the excitatory activity. In addition, CNQX reduced the spontaneous inhibitory activity. The N-methyl-D-aspartate antagonist D-2-amino-5-phosphonopentanoic acid reduced the inhibitory activity to a lesser degree, and there was no significant difference in amplitude or frequency of synaptic events in control and Mg2+-free solutions, indicating that the AMPA receptor plays an important role in regulating the inhibitory release of GABA within the SCN. Ipsi- and contralateral stimulation of the SCN consistently evoked excitatory synaptic responses. Inhibitory synaptic responses occurred in some neurons upon increasing stimulus strength. In conclusion, this study shows that there is a substantial influence from spontaneous glutamatergic synapses on the ventral part of the SCN and that these exhibit daily variations in activity. Diurnal fluctuations in spontaneous excitatory postsynaptic activity within this network may contribute to the mechanisms for synchronization of rhythms between individual SCN neurons and may underlie the daily variations in the spontaneous firing frequency of SCN neurons.  相似文献   

5.
Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD) and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.  相似文献   

6.
《Biophysical journal》2020,118(4):967-979
First proposed as a specialized mode of release at sensory neurons possessing ribbon synapses, multivesicular release has since been described throughout the central nervous system. Many aspects of multivesicular release remain poorly understood. We explored mechanisms underlying simultaneous multivesicular release at ribbon synapses in salamander retinal rod photoreceptors. We assessed spontaneous release presynaptically by recording glutamate transporter anion currents (IA(glu)) in rods. Spontaneous IA(glu) events were correlated in amplitude and kinetics with simultaneously measured miniature excitatory postsynaptic currents in horizontal cells. Both measures indicated that a significant fraction of events is multiquantal, with an analysis of IA(glu) revealing that multivesicular release constitutes ∼30% of spontaneous release events. IA(glu) charge transfer increased linearly with event amplitude showing that larger events involve greater glutamate release. The kinetics of large and small IA(glu) events were identical as were rise times of large and small miniature excitatory postsynaptic currents, indicating that the release of multiple vesicles during large events is highly synchronized. Effects of exogenous Ca2+ buffers suggested that multiquantal, but not uniquantal, release occurs preferentially near Ca2+ channels clustered beneath synaptic ribbons. Photoinactivation of ribbons reduced the frequency of spontaneous multiquantal events without affecting uniquantal release frequency, showing that spontaneous multiquantal release requires functional ribbons. Although both occur at ribbon-style active zones, the absence of cross-depletion indicates that evoked and spontaneous multiquantal release from ribbons involve different vesicle pools. Introducing an inhibitory peptide into rods to interfere with the SNARE protein, syntaxin 3B, selectively reduced multiquantal event frequency. These results support the hypothesis that simultaneous multiquantal release from rods arises from homotypic fusion among neighboring vesicles on ribbons and involves syntaxin 3B.  相似文献   

7.
The aim of the present study was to determine if excitatory synaptic transmission onto trigeminal motoneurons is subject to a presynaptic modulation by gamma-aminobutyric acid (GABA) via GABA(B) receptor in this system. Whole cell recordings were made from trigeminal motoneurons in longitudinal brain stem slices taken from 8-day-old rats. Monosynaptic excitatory postsynaptic potential (EPSP) activity was evoked by placing bipolar stainless steel electrodes dorsal-caudal to the trigeminal motor nucleus. Bath application of the GABA(B) receptor agonist, baclofen, produced a marked reduction in the mean amplitude and variance of evoked EPSPs and also increased the portion of transmission failures. It also produced a decrease in the frequency, but not in the mean amplitude, of spontaneous miniature EPSPs. Bath application of GABA(B) receptor antagonists 6-hydroxy-saclofen and CGP35348 increased both the amplitude and frequency of miniature EPSP activity. Taken together the above results suggest that the excitatory synaptic inputs onto trigeminal motoneurons are controlled by tonic presynaptic modulation by GABA(B) receptor.  相似文献   

8.
Microvesicles (MVs) released into the brain microenvironment are emerging as a novel way of cell-to-cell communication. We have recently shown that microglia, the immune cells of the brain, shed MVs upon activation but their possible role in microglia-to-neuron communication has never been explored. To investigate whether MVs affect neurotransmission, we analysed spontaneous release of glutamate in neurons exposed to MVs and found a dose-dependent increase in miniature excitatory postsynaptic current (mEPSC) frequency without changes in mEPSC amplitude. Paired-pulse recording analysis of evoked neurotransmission showed that MVs mainly act at the presynaptic site, by increasing release probability. In line with the enhancement of excitatory transmission in vitro, injection of MVs into the rat visual cortex caused an acute increase in the amplitude of field potentials evoked by visual stimuli. Stimulation of synaptic activity occurred via enhanced sphingolipid metabolism. Indeed, MVs promoted ceramide and sphingosine production in neurons, while the increase of excitatory transmission induced by MVs was prevented by pharmacological or genetic inhibition of sphingosine synthesis. These data identify microglia-derived MVs as a new mechanism by which microglia influence synaptic activity and highlight the involvement of neuronal sphingosine in this microglia-to-neuron signalling pathway.  相似文献   

9.
10.
Reliable synaptic transmission depends not only on the release machinery and the postsynaptic response mechanism but also on removal or degradation of transmitter from the synaptic cleft. Accumulating evidence indicates that postsynaptic and glial excitatory amino acid transporters (EAATs) contribute to glutamate removal. However, the role of presynaptic EAATs is unclear. Here, we show in the mouse retina that glutamate is removed from the synaptic cleft at the rod to rod bipolar cell (RBC) synapse by presynaptic EAATs rather than by postsynaptic or glial EAATs. The RBC currents evoked by electrical stimulation of rods decayed slowly after pharmacological blockade of EAATs. Recordings of the evoked RBC currents from EAAT subtype-deficient mice and the EAAT-coupled anion current reveal that functional EAATs are localized to rod terminals. Model simulations suggest that rod EAATs are densely packed near the release site and that rods are equipped with an almost self-sufficient glutamate recollecting system.  相似文献   

11.
(1) Responses of auditory interneurones were recorded intracellularly within the metathoracic ganglion of the locust when stimulating each tympanic membrane with a piezoelectric transducer. Thus, in contrast to conventional sound stimulation, each of the two ears could be activated independently from the other at variable intensities, duration and stimulus onsets. By means of this ‘earphone-like’ stimulation technique the binaural integration properties of auditory interneurons could be analysed. (2) A minority of units (3 out of 43) was affected by input from one side only. Their synaptic input was purely excitatory and the intensity characteristics reflected those of auditory receptor fibres. (3) Most interneurones received input from both ears, each being excitatory or one excitatory or one excitatory and one inhibitory. In some units the unilateral synaptic response already included both an EPSP and an IPSP. As a result of varying temporal interactions between the EPSP and the IPSP within the unilaterally evoked complex response the intensity characteristics differed widely from unit to unit. (4) With binaural simultaneous stimulation the complexity of the postsynaptic responses of most interneurones increased as the synaptic input from both ears coincided at the level of the recorded interneurone. Although both ears were stimulated symmetrically (at the same time and intensity), units were recorded where the latencies of ipsilateral and contralateral synaptic input were different. Contralateral inhibition could either follow or precede ipsilateral excitation and in some cases both EPSP and IPSP had the same latency. On the basis of these findings the binaural synaptic mechanisms of directional coding are discussed and compared with corresponding results under free field stimulus conditions.  相似文献   

12.
The effects of voltage-operated potassium channel blockers on evoked excitatory synaptic transmission were studied in theCA1 subfield of rat hippocampal slices. Incubation with 50 μM 4-aminopyridine (n=27), 300 nM α-dendrotoxin (n=3), or 5 to 25 mM tetraethylammonium (n=7) resulted in an enhancement of the peak amplitude of excitatory postsynaptic currents (EPSC) and significant prolongation of their decay at strong stimuli, due to an increased contribution of NMDA receptors into EPSC. In five experiments, the presence of an AMPA receptor antagonist, 4-aminopyridine, led to the appearance of NMDA receptor-mediated field excitatory postsynaptic potentials (fEPSP). It is suggested that various modulations increasing presynaptic Ca2+ entry and, consequently, glutamate release may increase an NMDA component of synaptic transmission via excitation of polysynaptic excitatory pathways and/or due to glutamate spillover to distant extrasynaptic NMDA receptors.  相似文献   

13.
Fioravante D  Chu Y  Myoga MH  Leitges M  Regehr WG 《Neuron》2011,70(5):1005-1019
High-frequency stimulation leads to a transient increase in the amplitude of evoked synaptic transmission that is known as posttetanic potentiation (PTP). Here we examine the roles of the calcium-dependent protein kinase C isoforms PKCα and PKCβ in PTP at the calyx of Held synapse. In PKCα/β double knockouts, 80% of PTP is eliminated, whereas basal synaptic properties are unaffected. PKCα and PKCβ produce PTP by increasing the size of the readily releasable pool of vesicles evoked by high-frequency stimulation and by increasing the fraction of this pool released by the first stimulus. PKCα and PKCβ do not facilitate presynaptic calcium currents. The small PTP remaining in double knockouts is mediated partly by an increase in miniature excitatory postsynaptic current amplitude and partly by a mechanism involving myosin light chain kinase. These experiments establish that PKCα and PKCβ are crucial for PTP and suggest that long-lasting presynaptic calcium increases produced by tetanic stimulation may activate these isoforms to produce PTP.  相似文献   

14.
IL-2 receptor signaling through the Shb adapter protein in T and NK cells   总被引:5,自引:0,他引:5  
We have investigated the effect of hypoxia on the excitatory synaptic transmission in the substantia gelatinosa neurons using perforated-patch-clamp configuration. Brief periods of hypoxia induced a depression in the evoked excitatory postsynaptic current (eEPSC) amplitude. The hypoxia-induced depression of eEPSC was not observed in the presence of theophylline, a nonselective adenosine receptor antagonist, and DPCPX, a selective adenosine receptor A1 antagonist. Application of adenosine (100 microM) also depressed eEPSC in a similar way as with hypoxia. This adenosine-induced depression of eEPSC was inhibited by DPCPX. Hypoxia and exogenous adenosine decreased the frequency of the spontaneous excitatory postsynaptic current (sEPSC) but not the amplitude of sEPSC and increased the paired-pulse ratio. From these results, it is suggested that acute hypoxia depresses the excitatory synaptic transmission by activating the presynaptic adenosine A1 receptor.  相似文献   

15.
Synaptic transmission starts after the presynaptic neuron has released diffusing neurotransmitters, leading to postsynaptic receptor activation and a postsynaptic current, mostly mediated by glutamatergic (AMPARs) receptors for excitatory neurons. Despite intense experimental and theoretical research, it is still unclear how factors such as the synaptic cleft geometry, the organization, the number and the multiconductance state of receptors, the geometry of postsynaptic density (PSD), and the neurotransmitter release location, shape the mean and the variance of the postsynaptic current and its plastic changes. To estimate the synaptic current amplitude and to account for the stochastic nature of synaptic transmission, we develop a semianalytical method in which we obtain a general expression for the coefficient of variation. The method uses the experimental data about the multiconductance channels. We find that PSD morphological changes can significantly modulate the synaptic current, which is maximally reliable (the coefficient of variation is minimal) for an optimal size of the PSD, that depends on the vesicular release active zone. We show that this optimal PSD size is due to nonlinear phenomena involving the receptor multibinding cooperativity. We conclude that changes in the PSD geometry can sustain a form of synaptic plasticity, independent of a change in the number of receptors.  相似文献   

16.
Real synaptic systems consist of a nonuniform population of synapses with a broad spectrum of probability and response distributions varying between synapses, and broad amplitude distributions of postsynaptic unitary responses within a given synapse. A common approach to such systems has been to assume identical synapses and recover apparent quantal parameters by deconvolution procedures from measured evoked (ePSC) and unitary evoked postsynaptic current (uePSC) distributions. Here we explicitly consider nonuniform synaptic systems with both intra (type I) and intersynaptic (type II) response variability and formally define an equivalent system of uniform synapses in which both uePSC and ePSC amplitude distributions best approximate those of the actual nonuniform synaptic system. This equivalent system has the advantage of being fully defined by just four quantal parameters: ?, the number of equivalent synapses;p, the mean probability of quantal release; mu, mean; and sigma(2), variance of the uePSC distribution. We show that these equivalent parameters are weighted averages of intrinsic parameters and can be approximated by apparent quantal parameters, therefore establishing a useful analytical link between the apparent and intrinsic parameters. The present study extends previous work on compound binomial analysis of synaptic transmission by highlighting the importance of the product of p and mu, and the variance of that product. Conditions for a unique deconvolution of apparent uniform synaptic parameters have been derived and justified. Our approach does not require independence of synaptic parameters, such as p and mu from each other, therefore the approach will hold even if feedback (i.e., via retrograde transmission) exists between pre and postsynaptic signals. Using numerical simulations we demonstrate how equivalent parameters are meaningful even when there is considerable variation in intrinsic parameters, including systems where subpopulations of high- and low-release probability synapses are present, therefore even under such conditions the apparent parameters estimated from experiments would be informative.  相似文献   

17.
In order to measure unitary properties of receptor channels at the postsynaptic site, the noise within the decay phases of inhibitory postsynaptic currents (IPSCs) and of N-methyl-D-aspartate (NMDA)-dependent excitatory postsynaptic currents (EPSCs) in rat hippocampal neurons was studied by nonstationary fluctuation analysis. Least squares scaling of the mean current was used to circumvent the wide variation in amplitude of postsynaptic currents. The variance of fluctuations around the expected current was analyzed to calculate single channel conductance, and fluctuation kinetics were studied with power spectra. The single channel conductance underlying the IPSC was measured as 14 pS, whereas that underlying the EPSC was 42 pS. Openings of the EPSC channel could also be resolved directly in low-noise whole-cell recordings, allowing verification of the accuracy of the fluctuation analysis. The results are the first measurements of the properties of single postsynaptic channels activated during synaptic currents, and suggest that the technique can be widely applicable in investigations of synaptic mechanism and plasticity.  相似文献   

18.
This paper shows the results of computer simulation of changes in motoneuron (MN) firing evoked by a repetitively applied synaptic volley that consists of a single excitatory postsynaptic potential (EPSP). Spike trains produced by the threshold-crossing MN model were analyzed as experimental results. Various output functions were applied for analysis; the most useful was a peristimulus time histogram, a special modification of a raster plot and a peristimulus time frequencygram (PSTF). It has been shown that all functions complement each other in distinguishing between the genuine results evoked by the excitatory volley and the secondary results of the EPSP-evoked synchronization. The EPSP rising edge was best reproduced by the PSTF. However, whereas the EPSP rise time could be estimated quite accurately, especially for high EPSP amplitudes at high MN firing rates, the EPSP amplitude estimate was also influenced by factors unrelated to the synaptic volley, such as the afterhyperpolarization duration of the MN or the amplitude of synaptic noise, which cannot be directly assessed in human experiments. Thus, the attempts to scale any estimate of the EPSP amplitude in millivolts appear to be useless. The decaying phase of the EPSP cannot be reproduced accurately by any of the functions. For the short EPSPs, it is extinguished by the generation of an action potential and a subsequent decrease in the MN excitability. For longer EPSPs, it is inseparable from the secondary effects of synchronization. Thus, the methods aimed at extracting information about long-lasting and complex postsynaptic potentials from stimulus-correlated MN firing, should be refined, and the theoretical considerations checked in computer simulations.  相似文献   

19.
The data obtained from this study suggest that the nonionizable anesthetic benzyl alcohol has two prominent actions on GABA- and glutamate-mediated synaptic transmission at the lobster neuromuscular junction. They are as follows: (1) depression of the excitatory end-plate potential and the postsynaptic membrane response to applied glutamate, and (2) a hyperpolarization of the postsynaptic resting membrane potential associated with a decrease in effective membrane resistance. No change in amplitude of the inhibitory end-plate potential or inhibitory reversal potential was seen. Excitatory miniature end-plate potential frequency was also unaffected. The depression of excitatory synaptic transmission appears to be due to a decreased responsiveness of the postsynaptic receptor-ionophore complex.  相似文献   

20.
突触前α7烟碱受体对海马神经元兴奋性突触传递的调控   总被引:3,自引:1,他引:3  
Liu ZW  Yang S  Zhang YX  Liu CH 《生理学报》2003,55(6):731-735
采用盲法膜片钳技术观察突触前烟碱受体(nicotinic acetylcholinel receptors,nAChRs)对海马脑片CAl区锥体神经元兴奋性突触传递的调控作用。结果显示,nAChRs激动剂碘化二甲基苯基哌嗪(dimethylphenyl—piperazinium iodide,DMPP)不能在CAl区锥体神经元上诱发出烟碱电流。DMPP对CAl区锥体神经元自发兴奋性突触后电流(spontaneous excitatory postsynaptic current,sEPSC)具有明显的增频和增幅作用,并呈现明显的浓度依赖关系。DMPP对微小兴奋性突触后电流(miniature excitatory postsynaptic current,mEPSC)具有增频作用,但不具有增幅作用。上述DMPP增强突触传递的作用不能被nAChRs拮抗剂美加明、六烃季铵和双氢-β-刺桐丁所阻断,但可被α-银环蛇毒素阻断。上述结果提示,海马脑片CAl区锥体神经元兴奋性突触前nAChRs含有对α-银环蛇毒素敏感的胡亚单位,其激活可增强海马CAl区锥体神经元突触前递质谷氨酸的释放,从而对兴奋性突触传递发挥调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号