首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
3.
The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain‐on‐snow) can cause ‘icing’, restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a ‘barometer’ of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between‐year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long‐term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to ‘rain‐on‐snow’ events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density‐dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important ‘missing’ mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic.  相似文献   

4.
Understanding community responses to climate is critical for anticipating the future impacts of global change. However, despite increased research efforts in this field, models that explicitly include important biological mechanisms are lacking. Quantifying the potential impacts of climate change on species is complicated by the fact that the effects of climate variation may manifest at several points in the biological process. To this end, we extend a dynamic mechanistic model that combines population dynamics, such as species interactions, with species redistribution by allowing climate to affect both processes. We examine their relative contributions in an application to the changing biomass of a community of eight species in the Gulf of Maine using over 30 years of fisheries data from the Northeast Fishery Science Center. Our model suggests that the mechanisms driving biomass trends vary across space, time, and species. Phase space plots demonstrate that failing to account for the dynamic nature of the environmental and biologic system can yield theoretical estimates of population abundances that are not observed in empirical data. The stock assessments used by fisheries managers to set fishing targets and allocate quotas often ignore environmental effects. At the same time, research examining the effects of climate change on fish has largely focused on redistribution. Frameworks that combine multiple biological reactions to climate change are particularly necessary for marine researchers. This work is just one approach to modeling the complexity of natural systems and highlights the need to incorporate multiple and possibly interacting biological processes in future models.  相似文献   

5.
Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive effects of climate warming (T), altered precipitation amounts [doubled (DP) and halved (HP)] and seasonality (SP, moving precipitation in July and August to January and February to create summer drought), and elevated [CO2] (C) on net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP), transpiration, and runoff. We examined those responses in seven ecosystems, including forests, grasslands, and heathlands in different climate zones. The modeling analysis showed that none of the three‐way interactions among T, C, and altered precipitation was substantial for either carbon or water processes, nor consistent among the seven ecosystems. However, two‐way interactive effects on NPP, Rh, and NEP were generally positive (i.e. amplification of one factor's effect by the other factor) between T and C or between T and DP. A negative interaction (i.e. depression of one factor's effect by the other factor) occurred for simulated NPP between T and HP. The interactive effects on runoff were positive between T and HP. Four pairs of two‐way interactive effects on plant transpiration were positive and two pairs negative. In addition, wet sites generally had smaller relative changes in NPP, Rh, runoff, and transpiration but larger absolute changes in NEP than dry sites in response to the treatments. The modeling results suggest new hypotheses to be tested in multifactor global change experiments. Likewise, more experimental evidence is needed for the further improvement of ecosystem models in order to adequately simulate complex interactive processes.  相似文献   

6.
Temperature and crowding are key environmental factors mediating the transmission and epizooty of infectious disease in ectotherm animals. The host physiology may be altered in a temperature‐dependent manner and thus affects the pathogen development and course of diseases within an individual and host population, or the transmission rates (or infectivity) of pathogens shift linearly with the host population density. To our understanding, the knowledge of interactive and synergistic effects of temperature and population density on the host–pathogen system is limited. Here, we tested the interactional effects of these environmental factors on phenotypic plasticity, immune defenses, and disease resistance in the velvetbean caterpillar Anticarsia gemmatalis. Upon egg hatching, caterpillars were reared in thermostat‐controlled chambers in a 2 × 4 factorial design: density (1 or 8 caterpillars/pot) and temperature (20, 24, 28, or 32°C). Of the immune defenses assessed, encapsulation response was directly affected by none of the environmental factors; capsule melanization increased with temperature in both lone‐ and group‐reared caterpillars, although the lone‐reared ones presented the most evident response, and hemocyte numbers decreased with temperature regardless of the population density. Temperature, but not population density, affected considerably the time from inoculation to death of velvetbean caterpillar. Thus, velvetbean caterpillars succumbed to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) more quickly at higher temperatures than at lower temperatures. As hypothesized, temperature likely affected caterpillars' movement rates, and thus the contact between conspecifics, which in turn affected the phenotypic expression of group‐reared caterpillars. Our results suggest that environmental factors, mainly temperature, strongly affect both the course of disease in velvetbean caterpillar population and its defenses against pathogens. As a soybean pest, velvetbean caterpillar may increase its damage on soybean fields under a scenario of global warming as caterpillars may reach the developmental resistance faster, and thus decrease their susceptibility to biological control by AgMNPV.  相似文献   

7.
Although long‐distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black‐throated blue warbler (Setophaga caerulescens), a double‐brooded long‐distance migrant, we used Pradel models to analyze 25 years of mark–recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late‐season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black‐throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号