首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reports from several European countries of the breakdown of the Vf resistance, the most frequently used source of resistance in breeding programs against apple scab, emphasize the urgency of diversifying the basis of apple scab resistance and pyramiding different apple scab resistances with the use of their associated molecular markers. GMAL 2473 is an apple scab resistant selection thought to carry the resistance gene Vr. We report the identification by BSA of three AFLP markers and one RAPD marker associated with the GMAL 2473 resistance gene. SSRs associated with the resistance gene were found by (1) identifying the linkage group carrying the apple scab resistance and (2) testing the SSRs previously mapped in the same region. One such SSR, CH02c02a, mapped on linkage group 2, co-segregates with the resistance gene. GMAL 2473 was tested with molecular markers associated with other apple scab resistance genes, and accessions carrying known apple scab resistance genes were tested with the SSR linked to the resistance gene found in GMAL 2473. The results indicate that GMAL 2473 does not carry Vr, and that a new apple scab resistance gene, named Vr 2, has been identified.  相似文献   

2.
The Rvi15 (Vr2) apple scab resistance locus found in the GMAL 2473 accession has been previously mapped to the top of the Linkage Group 2 (LG2) by analyzing 89 progeny plants of a cross between ‘Idared’ and GMAL 2473. A new population of 989 progeny plants, derived from a cross between ‘Golden Delicious’ and GMAL 2473, has been analyzed with the two SSR markers CH02c02a and CH02f06, previously found to be associated with Rvi15 (Vr2), and with two published markers derived from NBS sequences (ARGH17 and ARGH37) estimated to map close to the Rvi15 (Vr2) locus. ARGH17 and ARGH37, were found to be the closest markers to the resistance locus, bracketing it within an interval of 1.5 cM. The SSRs mapped one on each side of Rvi15 (Vr2). CH02f06 mapped at 2.9 cM from ARGH37 while CH02a02a mapped at 1.7 from ARGH17. The position of Rvi15 (Vr2) respect to CH02a02a indicates that Rvi15 (Vr2) and Rvi4 (Vh4), a second apple scab gene mapped on the top of LG2, are two different resistance genes. In order to develop even more tightly linked markers to Rvi15 (Vr2), ARGH17 was used as the starting point for chromosome walking through the Rvi15 (Vr2) homolog region of the cv. ‘Florina’. A single ‘Florina’ BAC clone, 36I17, was sufficient to span the homologous locus in the new population’s recombinant progeny. Sequencing of the 36I17 BAC clone allowed identifying seven putative ORFs, including two showing a TIR-NBS-LRR structure. Ten additional markers could be developed mapping within a 1.8 cM interval around the Rvi15 (Vr2) resistance gene. ARGH17 and GmTNL1 markers, the latter also derived from NBS-LRR resistance gene homolog sequence, are the closest markers to Rvi15 (Vr2) bracketing it within a 0.5 cM interval. The availability of 12 markers within the Rvi15 (Vr2) region, all within a small physical distance (kbp) in ‘Florina’, suggests that cloning of the Rvi15 (Vr2) apple scab resistance gene from GMAL 2473 will be possible.  相似文献   

3.
Using random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), and morphological traits, the first genetic maps for Cucurbita pepo (2n=2x=40) were constructed and compared. The two mapping populations consisted of 92 F2 individuals each. One map was developed from a cross between an oil-seed pumpkin breeding line and a zucchini accession, into which genes for resistance to Zucchini Yellow Mosaic Virus (ZYMV) from a related species, C. moschata, had been introgressed. The other map was developed from a cross between an oil-seed pumpkin and a crookneck variety. A total of 332 and 323 markers were mapped in the two populations. Markers were distributed in each map over 21 linkage groups and covered an average of 2,200 cM of the C. pepo genome. The two maps had 62 loci in common, which enabled identification of 14 homologous linkage groups. Polyacrylamide gel analyses allowed detection of a high number of markers suitable for mapping, 10% of which were co-dominant RAPD loci. In the Pumpkin-Zucchini population, bulked segregant analysis (BSA) identified seven markers less than 7 cM distant from the locus n, affecting lignification of the seed coat. One of these markers, linked to the recessive hull-less allele (AW11-420), was also found in the Pumpkin-Crookneck population, 4 cM from n. In the Pumpkin-Zucchini population, 24 RAPD markers, previously introduced into C. pepo from C. moschata, were mapped in two linkage groups (13 and 11 markers in LGpz1 and LGpz2, respectively), together with two sequence characterized amplified region (SCAR) markers linked to genes for resistance to ZYMV.  相似文献   

4.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

5.
The Brassica napus oilseed rape line, 7-7365AB, is a recessive epistatic genic male sterile (RGMS) two-type line system. The sterility is controlled by two pairs of recessive duplicate genes (Bnms3 and Bnms4) and one pair of recessive epistatic inhibitor gene (Bnrf). Homozygosity at the Bnrf locus (Bnrfrf) inhibits the expression of the two recessive male sterility genes in homozygous Bnms3ms3ms4ms4 plants and produces a male fertile phenotype. This line has a good potential for heterosis utilization but it is difficult to breed heterotic hybrids without molecular markers. To develop markers linked to the BnMs3 gene, amplified fragment length polymorphism (AFLP) technology was applied to screen the bulks of sterile and fertile individuals selected randomly from a population of near-isogenic lines (NIL) consisting of 2,000 plants. From a survey of 1,024 primer combinations, we identified 17 AFLP markers linked to the BnMs3 gene. By integrating the previous markers linked to the BnMs3 gene into the genetic map of the NIL population, two markers, EA01MC12 and EA09P06, were located on either side of the BnMs3 gene at a distance of 0.1 and 0.3 cM, respectively. In order to use the markers for male sterile line breeding, five AFLP markers, P05MG05, P03MG04, P11MG02, P05MC11250, and EA09P06, were successfully converted into sequence characterized amplified region (SCAR) markers. Two of these, P06MG04 and sR12384, were subsequently mapped on to linkage group N19 using two doubled-haploid mapping populations available at our laboratory derived from the crosses Tapidor × Ningyou7 and Quantum × No2127-17. The markers found in the present study should improve our knowledge of recessive genic male sterility (RGMS), and accelerate the development of male sterile line breeding and map-based cloning.  相似文献   

6.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation.  相似文献   

7.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

8.
The Pl Arg locus in the sunflower (Helianthus annuus L.) inbred line Arg1575-2 conferring resistance to at least four tested races (300, 700, 730, 770) of downy mildew (Plasmopara halstedii) was localized by the use of simple sequence repeat (SSR) markers. Bulked segregant analysis (BSA) was conducted on 126 individuals of an F2 progeny from a cross between a downy mildew susceptible line, CmsHA342, and Arg1575-2. Twelve SSR markers linked to the Pl Arg locus were identified. All markers were located proximal to Pl Arg on linkage group LG1 based on the map of Yu et al. (2003) in a window of 9.3 cM. Since Pl Arg was mapped to a linkage group different from all other Pl genes previously mapped with SSRs, it can be concluded that Pl Arg provides a new source of resistance against P. halstedii in sunflower.  相似文献   

9.
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.  相似文献   

10.
We have previously demonstrated that in the diploid rose population 97/9 resistance to the powdery mildew race 9 is controlled by a major dominant resistance gene, Rpp1. In the study reported here, we isolated several molecular markers closely linked to Rpp1 via bulked segregant analysis, with the gene being tagged in an interval of 5 cM between the two most adjacent markers. It was possible to convert the most closely linked amplified fragment length polymorphic (AFLP) marker into a sequence-characterised amplified region (SCAR) segregating in the same manner. Indirect mapping of Rpp1 in relation to the black spot resistance gene Rdr1 revealed no linkage between the two R genes. Furthermore, the genetic model based on a single dominant resistance gene was supported by the marker data.  相似文献   

11.
A narrow-down strategy to restrict the Vf region, which controls resistance to the fungal disease apple scab in apple, to a genetic distance of 0.4 cM is presented. Using 11 AFLP-derived SCARs and three RAPD-derived SCARs, all linked to the Vf gene, we subjected 1,412 scab-resistant individuals from 16 mapping populations to genotype analysis. Eleven recombinant individuals were identified within a genetic distance of 0.9 cM around the Vf gene. Using these 11 recombinants, we achieved fine-resolution of several AFLP-derived SCAR markers surrounding the Vf gene, resulting in the following genetic linkage map: ACS-6 and ACS are located left of the Vf gene at genetic distances of 0.2 cM and 0.1 cM, respectively; ACS-7 and ACS-9 are inseparable from the Vf gene; ACS-8, ACS-10, and ACS-4 are located to the right of the Vf gene at genetic distances of 0.1 cM, 0.4 cM, and 0.5 cM, respectively; the remaining five SCARs—ACS-11, ACS-5, ACS-2, ACS-1, and AL07—are inseparable and are located right of the Vf gene at a genetic distance of 0.7 cM. By integrating this linkage data with our previous physical map, we generated a revised map of the narrowed-down region of Vf.Communicated by P. Langridge  相似文献   

12.
A dominant male sterility (DGMS) line 79-399-3, developed from a spontaneous mutation in Brassica oleracea var. capitata, has been widely used in production of hybrid cultivars in China. In this line, male sterility is controlled by a dominant gene Ms-cd1. In the present study, fine mapping of Ms-cd1 was conducted by screening a segregating population Ms79-07 with 2,028 individuals developed by four times backcrossing using a male sterile Brassica oleracea var. italica line harboring Ms-cd1 as donor and Brassica oleracea var. alboglabra as the recipient. Bulked segregation analysis (BSA) was performed for the BC4 population Ms79-07 using 26,417 SRAP primer SRAPs and 1,300 SSRs regarding of male sterility and fertility. A high-resolution map surrounding Ms-cd1 was constructed with 14 SRAPs and one SSR. The SSR marker 8C0909 was closely linked to the MS-cd1 gene with a distance of 2.06 cM. Fourteen SRAPs closely linked to the target gene were identified; the closest ones on each side were 0.18 cM and 2.16 cM from Ms-cd1. Three of these SRAPs were successfully converted to dominant SCAR markers with a distance to the Ms-cd1 gene of 0.18, 0.39 and 4.23 cM, respectively. BLAST analysis with these SCAR marker sequences identified a collinear genomic region about 600 kb in scaffold 000010 on chromosomeA10 in B. rapa and on chromosome 5 in A. thaliana. These results provide additional information for map-based cloning of the Ms-cd1 gene and will be helpful for marker-assisted selection (MAS).  相似文献   

13.
Sequence-tagged microsatellite site (STMS) and sequence-tagged site (STS) markers linked closely to Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea were identified, and linkage between three wilt resistance genes was elucidated. The resistance to race 3 in chickpea germplasm accession WR-315 was inherited as a single gene, designated foc-3, in 100 F7 recombinant inbred lines derived from the cross of WR-315 (resistant) × C-104 (susceptible). The foc-3 gene was mapped 0.6 cM from STMS markers TA96 and TA27 and STS marker CS27A. Another STMS marker, TA194, at 14.3 cM, flanked the gene on the other side. Linkage between foc-3 and two other chickpea wilt resistance genes, foc-1 (syn. h 1 ) and foc-4, was established. foc-3 was mapped 9.8 cM from foc-1 and 8.7 cM from foc-4, whereas foc-1 and foc-4 are closely linked at 1.1 cM. The identification of closely linked markers to resistance genes will facilitate marker-assisted selection for introgression of the race 3 resistance gene to susceptible chickpea lines.Communicated by H.C. Becker  相似文献   

14.
Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F9 recombinant inbred lines (RILs) and 1,944 F2 plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely linked with the Ccu locus. On the high-resolution map developed with the F2 population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats in this region.  相似文献   

15.
The parthenocarpic fruit (pat) gene of tomato is a recessive mutation conferring parthenocarpy, which is the capability of a plant to set seedless fruits in the absence of pollination and fertilization. Parthenocarpic mutants offer a useful method to regulate fruit production and a suitable experimental system to study ovary and fruit development. In order to map the Pat locus, two populations segregating from the interspecific cross Lycopersicon esculentum × Lycopersicon pennellii were grown, and progeny plants were classified as parthenocarpic or wild-type by taking into account some characteristic aberrations affecting mutant anthers and ovules. Through bulk segregant analysis, we searched for both random and mapped AFLPs linked to the target gene. In this way, the Pat locus was assigned to the long arm of chromosome 3, as also confirmed by the analysis of a set of L. pennellii substitution and introgression lines. Afterwards, the Pat position was refined by using simple sequence repeats (SSRs) and conserved ortholog set (COS) markers mapping in the target region. The tightest COSs were converted into CAPS or SCAR markers. At present, two co-dominant SCAR markers encompassing a genetic window of 1.2 cM flank the Pat locus. Considering that these markers are orthologous to Arabidopsis genes, a positional cloning exploiting the tomato-Arabidopsis microsynteny seems to be a short-term objective.Communicated by F. Salamini  相似文献   

16.
Crown gall, caused by Agrobacterium tumefaciens, causes severe damage to apple saplings resulting in weak growth and loss of commercial value. Developing molecular markers linked to crown gall resistance genes, and establishing a marker-assisted selection (MAS) for such a trait would be an effective way to improve rootstock breeding for crown gall resistance. The wild apple Malus sieboldii Sanashi 63 carries the crown gall resistance gene Cg effective against the A. tumefaciens strain Peach CG8331 (biovar 2). Applying the genome scanning approach on the mapping population JM7 (cgcg) × Malus sieboldii Sanashi 63 (Cgcg), Cg was mapped on the linkage group (LG) 2. The constructed linkage map of LG 2 of Sanashi 63 spans 59.8 cM and has an average marker density of 3.5 cM per marker. The 191 bp allele of the simple sequence repeat (SSR) NZmsEB119405 co-segregated perfectly with Cg in a segregating population of 119 individuals. Quantitative trait loci, accounting for 75.3% to 84.3% of phenotypic variation were detected in the same position. Testing eight additional rootstocks with the NZmsEB119405 SSR marker revealed that the 191 bp allele is also present in crown gall-susceptible rootstock accessions. Only the markers CH03b01 and NZmsPal92 mapping at 0.9 and 4.3 cM from Cg, respectively, showed “private” alleles associated to Cg.  相似文献   

17.
Owing to its diverse sex types, the cucumber plant has been studied widely as a model for sex determination. In addition to environmental factors and plant hormones, three major genes—F/f, M/m, and A/a—regulate the sex types in the cucumber plant. By combining the bulked segregant analysis (BSA) and the sequence-related amplified polymorphism (SRAP) technology, we identified eight markers linking to the M/m locus. Among them, the two closely linked SRAP markers flanking the M/m locus were the co-dominant marker ME1EM26 and the dominant marker ME1EM23. Further, the co-dominant marker ME8SA7 co-segregated with the M/m locus. With the chromosome walking method using the cucumber genomic bacterial artificial chromosome (BAC) library, we successfully developed a co-dominant SCAR marker S_ME1EM23 from the ME1EM23 sequence. Along with the other two co-dominant SCAR markers S_ME1EM26 and S_ME8SA7 (developed from ME1EM26 and ME8SA7, respectively) in a larger segregating population (900 individuals), the M/m locus was mapped between S_ME1EM26 (5.4 cM) and S_ME1EM23 (0.7 cM), and S_ME8SA7 co-segregated with it. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Z. Li and J. Pan contribute equally to this article.  相似文献   

18.
Japanese lawngrass (Zoysia japonica) and Manila grass (Z. matrella) are the two most important and commonly used Zoysia species. A consensus based SSR linkage map was developed for the genus by combining maps from each species. This used previously constructed maps for two Z. japonica populations and a new map from Z. matrella. The new SSR linkage map for Z. matrella was based on 86 F2 individuals and contained 213 loci and covered a map distance of 1,351.2 cM in 32 linkage groups. Comparison of the three linkage maps constructed from populations with different genetic backgrounds indicated that most markers exhibited a consensus order, although some intervals or regions displayed discrepancy in marker orders or positions. The integrated map comprises 507 loci with a mean interval of 4.1 cM, covering a map distance of 2,066.6 cM in 22 linkage groups. The SSR-based map will allow marker-assisted selection and be useful for the mapping and cloning of economically important genes or quantitative trait loci.  相似文献   

19.
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), was the most destructive disease of wheat in Indiana and adjacent states before deployment of the resistance gene Stb1 during the early 1970s. Since then, Stb1 has provided durable protection against STB in widely grown wheat cultivars. However, its chromosomal location and allelic relationships to most other STB genes are not known, so the molecular mapping of Stb1 is of great interest. Genetic analyses and molecular mapping were performed for two mapping populations. A total of 148 F1 plants (mapping population I) were derived from a three-way cross between the resistant line P881072-75-1 and the susceptible lines P881072-75-2 and Monon, and 106 F6 recombinant-inbred lines (mapping population II) were developed from a cross between the resistant line 72626E2-12-9-1 and the susceptible cultivar Arthur. Bulked-segregant analysis with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and microsatellite or simple-sequence repeat (SSR) markers was conducted to identify those that were putatively linked to the Stb1 gene. Segregation analyses confirmed that a single dominant gene controls the resistance to M. graminicola in each mapping population. Two RAPD markers, G71200 and H19520, were tightly linked to Stb1 in wheat line P881072-75-1 at distances of less than 0.68 cM and 1.4 cM, respectively. In mapping population II, the most closely linked marker was SSR Xbarc74, which was 2.8 cM proximal to Stb1 on chromosome 5BL. Microsatellite loci Xgwm335 and Xgwm213 also were proximal to Stb1 at distances of 7.4 cM and 8.3 cM, respectively. The flanking AFLP marker, EcoRI-AGC/MseI-CTA-1, was 8.4 cM distal to Stb1. The two RAPD markers, G71200 and H19520, and AFLP EcoRI-AGC/MseI-CTA-1, were cloned and sequenced for conversion into sequence-characterized amplified region (SCAR) markers. Only RAPD allele H19520 could be converted successfully, and none of the SCAR markers was diagnostic for the Stb1 locus. Analysis of SSR and the original RAPD primers on several 5BL deletion stocks positioned the Stb1 locus in the region delineated by chromosome breakpoints at fraction lengths 0.59 and 0.75. The molecular markers tightly linked to Stb1 could be useful for marker-assisted selection and for pyramiding of Stb1 with other genes for resistance to M. graminicola in wheat.  相似文献   

20.
Fragaria vesca is a short-lived perennial with a seasonal-flowering habit. Seasonality of flowering is widespread in the Rosaceae and is also found in the majority of temperate polycarpic perennials. Genetic analysis has shown that seasonal flowering is controlled by a single gene in F. vesca, the SEASONAL FLOWERING LOCUS (SFL). Here, we report progress towards the marker-assisted selection and positional cloning of SFL, in which three ISSR markers linked to SFL were converted to locus-specific sequence-characterized amplified region (SCAR1–SCAR3) markers to allow large-scale screening of mapping progenies. We believe this is the first study describing the development of SCAR markers from ISSR profiles. The work also provides useful insight into the nature of polymorphisms generated by the ISSR marker system. Our results indicate that the ISSR polymorphisms originally detected were probably caused by point mutations in the positions targeted by primer anchors (causing differential PCR failure), by indels within the amplicon (leading to variation in amplicon size) and by internal sequence differences (leading to variation in DNA folding and so in band mobility). The cause of the original ISSR polymorphism was important in the selection of appropriate strategies for SCAR-marker development. The SCAR markers produced were mapped using a F. vesca f. vesca × F. vesca f. semperflorens testcross population. Marker SCAR2 was inseparable from the SFL, whereas SCAR1 mapped 3.0 cM to the north of the gene and SCAR3 1.7 cM to its south.Communicated by H. Nybom  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号