首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了确定环孢菌素A结晶工艺,对溶剂种类、反溶剂加入量、结晶温度和降温方式等因素的影响进行研究。首先通过静态结晶研究,确定了丙酮/水结晶体系和溶剂比例。在此基础上,设计了正交试验L9(34)考察动态结晶中各因素对环孢菌素A结晶收率和纯度的影响,并进一步优化了结晶降温方式。结果表明:确定环孢菌素A结晶的最佳条件为采用梯度程序降温,养晶温度为-5℃,丙酮和水的体积比为2:1,反溶剂水流加时间为0.5h,开始流加点为降温至0℃,结晶时间约为3h。经HPLC分析环孢菌素A的纯度平均值为99.15%,收率平均值为87.7%。  相似文献   

2.
目的:建立奥利司他片的含量测定方法.方法:采用高效液相色谱法,Agela Venusil XBP-C18 色谱柱(15cm×4.0mm,5p m),流动相:甲醇:水:甲酸(89:11:0.1);柱温为35℃;流速1.5mL·min-1;进样量10μ L.紫外检测器,检测波长为210nm.结果:主成分奥利司他在0.4~0.6mg/ml浓度范围内线性关系良好,相关系数r>0.999,平均回收率为99.4%,符合规定.结论:该方法专属性强,准确度好,可作为奥利司他片含量测定的质量控制方法.  相似文献   

3.
目的:建立奥利司他原料药中有机残留溶剂的测定方法。方法:采用顶空气相色谱法,DB-624毛细管色谱柱(30m×0.53mm×5μm),火焰离子化检测器(FID),程序升温测定奥利司他原料药中有机残留溶剂。结果:5种残留溶剂均完全分离,在考察的浓度范围内线性关系良好(r等于0.9999),回收率符合规定。结论:该方法专属性好,准确度和灵敏度高,可用于奥利司他原料药中残留溶剂的质量控制。  相似文献   

4.
本文通过实验对晶种对头孢曲松钠溶析结晶过程产品粒度以及粒度分布影响情况进行分析,根据实验结果发现晶种能够使结晶产品的单分散性强、平均粒度更大,同时晶种加入量存在最优值,养晶时间也存在一定的范围。希望本文相关内容能够给相关人员提供参考依据。  相似文献   

5.
利用一株生产DHA专利菌株裂殖壶菌LX0809,在10 L全自动发酵罐中考察了16个搅拌转速和通气量组合对裂殖壶菌LX0809发酵产DHA的影响。生物量和总油脂的产量随搅拌转速和通风量的增加而增加,DHA占总油脂比例随搅拌转速和通风量的增加而降低,最终确定通气量为全程0.3 m3/h(通气比0.83),搅拌转速为前40 h 400 r/min,后56 h 300 r/min。发酵96 h放罐,细胞生物量92 g/L,油脂质量浓度52.3 g/L,DHA占总油脂含量为40.2%,DHA发酵产量高达21 g/L。  相似文献   

6.
研究了纤维堆囊菌(Sorangium cellulosum)So F5-76在5 L发酵罐水平上发酵生产埃博霉素B的基本工艺参数,具体考察了接种量、搅拌转速、通气量、添加消泡剂及补糖等5个工艺参数对埃博霉素B发酵产量的影响。最后确定发酵罐基本发酵条件为接种量9%,搅拌转速180 r/min,空气流量3.5 L/min,消泡剂种类选择Antifoam B聚醚类消泡剂,补糖控制在发酵液糖浓度为0.2 g/L,在此条件下埃博霉素B的产量可达25.6 mg/L。  相似文献   

7.
为了提高牡荆苷溶出度,本实验采用反溶剂重结晶法(以N-甲基吡咯烷酮为溶剂,水为反溶剂)对牡荆苷原粉进行超细化研究。考察了药物浓度、溶剂与反溶剂体积比、搅拌转速及表面活性剂(PVP、Tween80、SDS)对牡荆苷微粉粒径的影响,确定牡荆苷微粉的最佳制备条件为:药液浓度为30 mg·mL-1,反溶剂与溶剂体积比为15∶1,搅拌转速为1 500 r·min-1,反溶剂中表面活性剂PVP浓度为8 mg·mL-1,上述条件下制备的牡荆苷微粉平均粒径为291.1 nm;采用扫描电镜(SEM)、X射线衍射(XRD)、差示扫描(DSC)、红外光谱(FTIR)对牡荆苷原粉与微粉进行了表征,与原粉相比牡荆苷微粉粒径变小,结晶度降低,其化学性质未发生改变,体外溶出度显著提高。  相似文献   

8.
以纯化亚麻木酚素粗品为目的,比较了X-5、D101和AB-8三种大孔吸附树脂对木酚素的吸附性能,筛选出X-5大孔树脂最合适。通过动态吸附、解吸实验确定了上样浓度与上样量。在上样浓度10 mg/m L,上样量25 m L时分离效果最佳。同时,重点考察了梯度洗脱和等度洗脱两种解吸方式对木酚素产品纯度和收率的影响。等度洗脱采用30%乙醇水溶液,木酚素纯度可达85.49%,收率为57.59%;采用60%乙醇水溶液洗脱,木酚素纯度为59.30%,收率最高为75.05%。梯度洗脱可得到不同纯度产品,过程总收率为77.63%。  相似文献   

9.
研究细胞接种量、搅拌转速和微载体浓度对MDCK细胞微载体培养时的影响,以合理优化MDCK细胞微载体培养最大增殖时期的最优条件,对疫苗和病毒分离具有重要意义,以期达到在疫苗和病毒分离领域提高生产效率。采用微载体培养MDCK细胞,在不同搅拌转速、微载体浓度和细胞接种量进行培养,每隔24 h取样计数,确定最优的培养条件。结果表明,细胞接种量在20个/球、搅拌转速45 r/min和载体浓度在2 g/L时,MDCK细胞的增殖较快,细胞密度较大,细胞的密度最大可达15.6×106个/mL,适合MDCK细胞增殖生长。  相似文献   

10.
D-阿拉伯糖是多种功能性糖合成的中间体,其纯度高低决定了功能性糖转化率的高低,所以得到高纯度的D-阿拉伯糖尤为重要。通过对D-阿拉伯糖结晶温度、搅拌速度、结晶液中离子含量等因素进行试验,确定了采用梯度降温形式、搅拌速度控制在5 r/min,离子含量控制在100 μs/cm以下能够得到纯度达99.8%的D-阿拉伯糖晶体,实验结果为后续功能性糖的高效转化奠定了基础。  相似文献   

11.
萃取耦合发酵可有效减弱产物抑制和提高底物利用效率,本文就萃取耦合发酵生产丁醇工艺中的萃取剂的选择、萃取剂加入量、底物浓度等发酵条件进行了研究。结果表明:最佳萃取剂为大豆油生物柴油,油水比为3∶5,发酵过程无需搅拌,静置发酵为宜,在发酵之初加入萃取剂。分别以玉米和木薯为发酵底物,确定其最适底物浓度为100 g/L,以玉米为原料萃取耦合发酵中丁醇和总溶剂产量分别为18.17 g/L和29.31 g/L。以木薯为原料萃取耦合发酵生产丁醇及总溶剂产量比传统发酵分别提高了48.69%和51.80%。  相似文献   

12.
以胶质芽孢杆菌(Bacillus mucilaginosus)SM-01作为出发菌株,通过研究5 L发酵罐中不同搅拌转速、通气量对菌株SM-01生产胞外多糖的影响,确定了最适的搅拌转速与通气量分别为600 r/min、2.0 VVM(每分钟通气量与罐体实际料液体积的比值)。在最适条件下,发酵液中胶质芽孢杆菌胞外多糖(BMPS)的质量浓度可达29.8 g/L。进而经DEAE-52离子交换柱层析纯化得到纯多糖。凝胶渗透色谱法测定多糖的分子量为4.4×10~6。红外光谱分析其含有酸性糖成分,经间羟基联苯法测定,其酸性糖含量为24.6%。采用气相色谱检测BMPS单糖构成为葡萄糖、甘露糖及半乳糖,摩尔比为3.2∶2.2∶1。  相似文献   

13.
采用阳离子表面活性剂氯化三辛基甲胺(TOMAC)/氯仿/正丁醇反胶束体系萃取地木耳中的多糖。分析有机溶剂氯仿与助表面活性剂正丁醇比例、TOMAC浓度、多糖粗提液浓度、促溶剂盐酸胍浓度、盐离子种类和浓度对前萃取率的影响。结果表明:向0.5 mg/m L多糖粗提液中加入10 mmol/L盐酸胍(Gu HCl)和0.06 mol/L Na Cl,与等体积25 mmol/L TOMAC/氯仿-正丁醇(V∶V=3∶1)的反胶束体系混合,地木耳多糖前萃取率为53.21%;反萃时水相中Na Cl浓度为0.14 mol/L,盐酸胍浓度浓度为0.6 mol/L,在此条件下地木耳多糖反萃取率为93.2%。  相似文献   

14.
考察4种无机铁盐改性沸石对丁醇生产菌Clostridium acetobutylicum XY16的固定效率及其发酵产丁醇性能的影响。结果表明:铁改性沸石对菌体的固定效率均优于未改性沸石,而Fe3+改性效果优于Fe2+,经FeCl3改性的沸石对菌体具有良好的吸附作用,当Fe3+-zeolite用量为180 g/L时,细胞的固定效率达到87%。在此基础上,比较了沸石负载的铁离子量对丁醇发酵性能的影响,沸石负载的铁离子量为6.0 mg/g时可显著提高丁醇发酵性能,当葡萄糖质量浓度为60 g/L时进行发酵,丁醇产量为13.5 g/L,总溶剂可达20 g/L,总溶剂的生产速率为0.385g/(L.h),比游离细胞发酵分别提高了9.5%、10.3%和40%。  相似文献   

15.
采用大孔吸附树脂层析结合硅胶柱层析,对环孢菌素A的分离纯化进行研究,确定了最佳层析条件,建立了工业化制备环孢菌素A的工艺。大孔吸附树脂层析选用D101树脂作为吸附介质,提取液丙酮含量控制在50%,最大吸附量为35 mg/g湿树脂,洗脱剂选用丙酮;硅胶柱层析选用42~64μm硅胶作为层析介质,最优层析条件为柱床高径比10∶1,流动相配比V(石油醚)∶V(丙酮)=70∶30,流速80 mL/m in,环孢菌素A上样质量浓度100 g/L,硅胶层析平均收率为84.2%,环孢菌素A纯度可达到97%以上,整个工艺总收率为65%~70%。  相似文献   

16.
采用单因素试验和正交试验研究发酵培养基组成,优化Streptomyces sp. FIM-16-06产他克莫司的发酵条件,探讨摇瓶发酵的主要影响因子初始p H、装液量、转速等发酵参数的影响。确定了适宜的发酵培养基和发酵参数:6. 0%玉米淀粉、2. 0%黄豆粉、2. 0%葡萄糖和0. 5%玉米浆,初始pH 7. 5,装液量50 m L/500 m L三角瓶,种子菌龄48 h,接种量10%,摇床转速250 r/min,发酵温度27℃,发酵周期7 d。优化后的发酵水平较原生产工艺提高60%以上。他克莫司的优化发酵工艺为其工业化生产奠定了基础。  相似文献   

17.
溶氧对杀菌肽-X发酵工艺的影响   总被引:1,自引:0,他引:1  
本研究采用 30L自动控制发酵罐研究了重组杀菌肽 X工程菌的基本发酵条件。经 12h发酵培养 ,发酵培养基中氨苄青霉素浓度为 0和 100μg/mL时 ,包涵体得率基本一致 ,干重分别为1.24和1.20g L ;控制溶氧为 20%~30%和溶氧自然变化 (转速分别为 250和150r/min)的条件下 ,包涵体得率有较大差异 ,干重分别为0.05、0.71和1.24g L。在较优化的发酵条件下 ,目的融合蛋白的表达量占菌体总蛋白的 45%~50%。  相似文献   

18.
低毒河豚鱼毒素的提取和检测   总被引:14,自引:0,他引:14  
本文以含毒量低的棕斑腹刺豚为实验材料,研究了甲醇、乙醇和乙酸、水等四种溶剂对低毒河豚毒素的提取技术和检测方法。通过动物中毒实验和薄层层析法快速检测技术相结合,从中进一步研究出了低毒河豚鱼毒素提取的技术和快速检测方法,将解决鱼类综合利用的问题,有利于推动我省人工养殖业的大发展。实验结果表明:四种溶剂提取的河豚毒素均能引起动物中毒死亡,死亡症状与文献报导的河豚毒素中毒症状一致;在薄层层析板上均呈现黄褐色斑点,且展距相同,经紫外扫描的结果分析,四种溶剂提取的河豚毒素在含量上存在明显的差异,乙酸作为溶剂提取河豚毒素的效果最好。同时用薄层层析较快和很准确地检测出提取物中河豚毒素的含量。  相似文献   

19.
在静置、搅拌及通气搅拌3种不同控氧条件下,分别用干酪乳杆菌Lactobacillus casei B3发酵及全细胞转化合成了苯乳酸,考察菌体生长、葡萄糖消耗及其发酵与转化合成苯乳酸的规律。结果表明:在转速100 r/min的搅拌条件下,L.casei B3发酵合成苯乳酸的浓度比静置发酵条件下提高了41.4%;但在空气流量2 L/min及转速100r/min的通气搅拌下,发酵合成苯乳酸的浓度较静置发酵时下降了60.3%;以8 g/L苯丙酮酸为底物,以相应静置、搅拌及通气搅拌条件下所得的菌体为全细胞催化剂转化合成苯乳酸,其摩尔转化率分别为67.2%、62.7%和35.9%。此结果说明:适度的搅拌促进了发酵过程的底物和产物传质,但充足或过量供氧会影响细胞内的转化合成酶系,不利于苯乳酸的全细胞转化合成。  相似文献   

20.
本研究的目的是观察奥利司他(Orlistat)逆转肺腺癌耐顺铂细胞株A549/DDP的耐药作用并考察其可能的分子机制。应用CCK-8法检测并计算肺腺癌耐药细胞株A549/DDP对顺铂(cisplatin, DDP)的耐药指数(resistance index, RI),筛选奥利司他的最佳实验浓度并观察其对A549/DDP细胞的耐药逆转效果;倒置荧光显微镜下观察各实验组细胞的形态学变化及Hoechst 33258荧光染色后细胞凋亡形态学改变;采用流式细胞术检测不同药物处理对细胞凋亡率的影响;Western blotting检测各实验组细胞P-gp、FASN、PI3K、Akt、p-Akt、NF-κB、Bcl-2和cleved-caspase-3的表达情况。结果显示,奥利司他抑制了A549/DDP耐药细胞株的增殖,且具有浓度依赖性。奥利司他与DDP联用增加了耐药株A549/DDP细胞对DDP的敏感性,耐药逆转倍数为5.02。倒置荧光显微镜观察到联合用药组细胞出现了明显的凋亡形态学改变。流式细胞术结果表明,与对照组和单药组比较,两种药物联用后细胞的凋亡率显著提高(p0.05)。Western blotting检测结果显示,相较于其它3组,联合用药组中耐药相关蛋白P-gp表达下调(p0.01),PI3K、p-Akt、NF-κB表达水平均显著降低(p0.01),抗凋亡蛋白Bcl-2表达下降(p0.01),凋亡相关蛋白cleved-caspase-3表达上调(p0.01);虽然FASN的表达在单用奥利司他组及联合用药组中均降低,但这两组间的FASN表达水平并无统计学差异。以上结果表明,奥利司他能够提高A549/DDP耐药细胞株对化疗药物DDP的敏感性,具有逆转肺腺癌细胞耐药性的作用,其机制与降低耐药蛋白P-gp的表达、抑制PI3K/Akt/NF-κB信号通路以及其下游凋亡相关蛋白有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号