首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Selective neurodegeneration is a prominent feature in Alzheimer's disease; however, the mechanism of neuronal death is still unclear. Nonetheless, the topographical distribution of different types of receptors is thought to contribute to the regional selective nature of neuronal degeneration. Specifically, since glutamatergic transmission is severely altered by the early degeneration of cortico-cortical connections and hippocampal projections in Alzheimer's disease, we suspect that glutamate receptors may play a new role in the pathophysiology of disease. Here we review the salient aspects of glutamate receptor expression in Alzheimer's disease and how their differential regulation can contribute to the selective neurodegeneration seen in the disease. Additionally, we assess the potential therapeutic value of glutamate receptors as a target for drug intervention in Alzheimer's disease.  相似文献   

3.
Functional architecture of olfactory ionotropic glutamate receptors   总被引:5,自引:0,他引:5  
Download : Download video (23MB)  相似文献   

4.
Constitutive expression of mRNA was seen for the vesicular glutamate transporter brain-specific Na(+)-dependent inorganic phosphate cotransporter (BNPI), but not differentiation-associated Na(+)-dependent inorganic phosphate cotransporter, in rat calvarial osteoblasts cultured for 7 and 21 days in vitro (DIV). Three different agonists for ionotropic glutamate receptors (iGluR) at 1mM, as well as 50mM KCl, significantly increased the release of endogenous L-glutamate from osteoblasts cultured for 7DIV when determined 5 min after the addition by using a high performance liquid chromatograph. The inhibitor of desensitization of DL-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA) receptors cyclothiazide significantly potentiated and prolonged the release of endogenous L-glutamate evoked by AMPA in a dose-dependent manner. The release evoked by AMPA was significantly prevented by the addition of an AMPA receptor antagonist as well as by the removal of Ca(2+) ions. These results suggest that endogenous L-glutamate could be released from intracellular vesicular constituents associated with BNPI through activation of particular iGluR subtypes expressed in cultured rat calvarial osteoblasts.  相似文献   

5.
Although tricyclic antidepressants have been in existence since the 1940s when they were discovered upon screening iminodibenzyl derivatives for other potential therapeutic uses, their mechanism of action has remained unclear [A. Goodman Gilman, T.W. Rall, A.S. Nies, P. Taylor, Goodman and Gilman's The Pharmacological Basis of Therapeutics, eighth ed., Pergamon Press, New York, 1990]. In addition to their ability to hinder the reuptake of biogenic amines, there is mounting evidence that the tricyclic antidepressants inhibit glutamate transmission. Here, intrinsic tryptophan fluorescence spectroscopy is used to document the binding of desipramine, a member of the tricyclic antidepressant family, to a well-defined extracellular glutamate binding domain (S1S2) of the GluR2 subunit of the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. The binding is distinct from those of other known effectors of the receptor, including the endogenous sulfated neurosteroids pregnenolone sulfate and 3alpha-hydroxy-5beta-pregnan-20-one sulfate, and is consistent with a conformational change upon binding that is allosterically transmitted to the channel region of the receptor.  相似文献   

6.
7.
The impact of structural biology on the design of ligands (agonists, antagonists and modulators) for ionotropic glutamate receptors is reviewed.  相似文献   

8.
Pharmacological properties of ionotropic glutamate receptors from Calliphora vicina larvae neuro-muscular junction (C. vicina iGlurs) were studied by two-electrode voltage-clamp technique. Characteristics of the ion channel pore were analyzed using a 26-member series of channel blockers, which includes mono- and dicationic derivatives of adamantane and phenylcyclohexyl. Structure-activity relationships were found to be markedly similar to the Ca2+-permeable AMPA receptors (AMPAR) but not NMDA receptors (NMDAR) channel subtype seen in vertebrates. Like AMPARs the channels of C. vicina iGlurs are sensitive mainly to dicationic compounds with 6-7 spacers between hydrophobic headgroup and terminal aminogroup. Study of the voltage dependence of block demonstrated that, like AMPARs, the C. vicina iGlur channels, are permeable to organic cations with dimensions exceeding 10 A. Concentration dependence of block suggests the presence of two distinct channel populations with approximately 20-fold different sensitivity to cationic blockers. The recognition domain properties are more complex. Besides glutamate, the channels can be activated by kainate, quisqualate and domoate. Competitive antagonists of AMPAR and NMDAR are virtually inactive against the C. vicina iGlurs as well as allosteric modulators GYKI 52466 and PEPA. Surprisingly, the responses were potentiated 3 times by 100 mkM of cyclothiazide. We conclude that the channel-forming domain of C. vicina iGlurs is AMPAR-like, whereas the recognition domain is specific.  相似文献   

9.
A review of the main approaches to the revealing molecular evolution of glutamate receptors is presented. Large amount of evidences concerning the homology of glutamate-binding proteins forming the membrane channels has been accumulated. However, the knowledge of amino acid sequences of these proteins is the necessary but not sufficient condition for clarification of their origin and the changes in the course of molecular evolution. The natural selection estimated and secured the functional validity ofligand-gated channels. Therefore the functional and molecular approaches should supplement each other. It has been shown by and example of glutamate receptor channels of vertebrate and invertebrate animals that the combined analysis of the structure and function allows to reveal the main routes of molecular evolution of this kind of synaptic receptors.  相似文献   

10.
Ionotropic glutamate receptors function can be affected by neurosteroids, both positively and negatively. N-methyl-D-aspartate (NMDA) receptor responses to exogenously applied glutamate are potentiated or inhibited (depending on the receptor subunit composition) by pregnenolone sulphate (PS) and inhibited by pregnanolone sulphate (3alpha5betaS). While PS effect is most pronounced when its application precedes that of glutamate, 3alpha5betaS only binds to receptors already activated. Synaptically activated NMDA receptors are inhibited by 3alpha5betaS, though to a lesser extent than those tonically activated by exogenous glutamate. PS, on the other hand, shows virtually no effect on any of the models of synaptically activated NMDA receptors. The site of neurosteroid action at the receptor molecule has not yet been identified, however, the experiments indicate that there are at least two distinct extracellularly located binding sites for PS mediating its potentiating and inhibitory effects respectively. Experiments with chimeric receptors revealed the importance of the extracellular loop connecting the third and the fourth transmembrane domain of the receptor NR2 subunit for the neurosteroid action. alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors are inhibited by both PS and 3alpha5betaS. These neurosteroids also affect AMPA receptors-mediated synaptic transmission, however, in a rather indirect way, through presynaptically located targets of action.  相似文献   

11.
12.
The topography of the channel binding site in glutamate receptors (AMPA and NMDA types of rat brain neurons, receptors of molluscan neurons and insect muscle), and in two subtypes of nicotinic cholinoreceptors (in frog muscle and cat sympathetic ganglion), has been investigated by comparison of the blocking effects of mono- and dicationic derivatives of adamantane and phenylcyclohexyl. The channels studied can be divided into two groups. The first one includes AMPA receptor and glutamate receptors of mollusc and insect, and is characterised by the absence of activity of monocationic drugs and the strong dependence of dicationic once on the internitrogen distance in the drug molecule. The second group includes NMDA receptor and both nicotinic cholinoreceptors. Contrary, here the blocking potency of monocations and dications are practically equal irrespective of molecule length. The data obtained suggest that hydrophobic and nucleophilic components of the binding site are located close to each other in the channels of the NMDA receptor type but are separated by approximately 10 A in the AMPA receptor channel.  相似文献   

13.
The endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases. To begin to understand this differential regulation, we have cloned the S1S2 and amino terminal domains (ATD) of the NMDA GluN2B and GluN2D and AMPA GluA2 subunits. Here we present results that show that PS and PREGAS bind to different sites in the ATD of the GluA2 subunit, which when combined with previous results from our lab, now identifies two binding domains for each neurosteroid. We also show both neurosteroids bind only to the ATD of the GluN2D subunit, suggesting that this binding is distinct from that of the AMPA GluA2 subunit, with both leading to iGluR inhibition. Finally, we provide evidence that both PS and PREGAS bind to the S1S2 domain of the NMDA GluN2B subunit. Neurosteroid binding to the S1S2 domain of NMDA subunits responsible for potentiation of iGluRs and to the ATD of NMDA subunits responsible for inhibition of iGluRs, provides an interesting option for therapeutic design.  相似文献   

14.
The muscarinic agonist arecoline (6 mg/kg, subcutaneously in mice) induced a long-lasting tremor. The inhibitory potency of non-competitive antagonists of ionotropic glutamate receptors has been studied. These antagonists are the derivatives of adamantane and phenylcyclohexyl. A part of them: monocationic compounds, selectively block the NMDA-receptor channels, their dicationic analogues affecting both channels of the NMDA- and the AMPA-glutamate receptors. Monocationic blockers effectively reduced the arecoline-evoked tremor and their potency correlated with ability to block the NMDA-receptor channels. Dicationic blockers revealed protective effect only in low range doses (0.0001-0.01 microM/kg). Further increase of the dose reduced or completely abolished this effect. This suggests that the NMDA-receptors are involved in the genesis of arecoline-evoked tremor. The only moderate blockade of the AMPA-receptors potentiates the drug blocking action but the prevalent blockade of these receptors impedes the effect on arecoline-evoked tremor.  相似文献   

15.
16.
Summary. We used two approaches to identify sequence variants in ionotropic glutamate receptor (IGR) genes: high-throughput screening and resequencing techniques, and information mining of public (e.g. dbSNP, ENSEMBL) and private (i.e. Celera Discovery System) sequence databases. Each of the 16 known IGRs is represented in these databases, their positions on a canonical physical map are established. Comparisons of mouse, rat, and human sequences revealed substantial conservation among these genes, which are located on different chromosomes but found within syntenic groups of genes. The IGRs are members of a phylogenetically ancient gene family, sharing similarities with glutamate-like receptors in plants. Parsimony analysis of amino acid sequences groups the IGRs into three distinct clades based on ligand-binding specificity and structural features, such as the channel pore and membrane spanning domains. A collection of 38 variants with amino acid changes was obtained by combining screening, resequencing, and informatics approaches for several of the IGR genes. This represents only a fraction of the sequence variation across these genes, but in fact these may constitute a large fraction of the common polymorphisms at these genes and these polymorphisms are a starting point for understanding the role of these variants in function.Genetically influenced human neurobehavioral phenotypes are likely to be linked to IGR genetic variants. Because ionotropic glutamate receptor activation leads to calcium entry, which is fundamental in brain development and in forms of synaptic plasticity essential for learning and memory and is essential for neuronal survival, it is likely that sequence variants in IGR genes may have profound functional roles in neuronal activation and survival mechanisms.  相似文献   

17.
18.
Learning and memory are essential processes of both vertebrate and invertebrate nervous systems that allow animals to survive and reproduce. The neurotransmitter glutamate signals via ionotropic glutamate receptors (iGluRs) that have been linked to learning and memory formation; however, the signaling pathways that contribute to these behaviors are still not well understood. We therefore undertook a genetic and electrophysiological analysis of learning and memory in the nematode Caenorhabditis elegans. Here, we show that two genes, nmr-1 and nmr-2, are predicted to encode the subunits of an NMDA-type (NMDAR) iGluR that is necessary for memory retention in C. elegans. We cloned nmr-2, generated a deletion mutation in the gene, and showed that like nmr-1, nmr-2 is required for in vivo NMDA-gated currents. Using an associative-learning paradigm that pairs starvation with the attractant NaCl, we also showed that the memory of a learned avoidance response is dependent on NMR-1 and NMR-2 and that expression of NMDARs in a single pair of interneurons is sufficient for normal memory. Our results provide new insights into the molecular and cellular mechanisms underlying the memory of a learned event.  相似文献   

19.
Ionotropic glutamate receptors antagonists are now widely considered as potential medications for a variety of disorders, such as seizures, neurodegenerative diseases, stroke, and opiate tolerance and dependence. There is a growing body of evidence suggesting that the safest drugs are to be found amongst antagonists acting at glycine and polyamine sites of NMDA-receptor complex, low-affinity channel blockers, subtype-selective competitive NMDA-receptor antagonists, as well as non-NMDA glutamate receptors antagonists. These antagonists exhibit little or no abuse liability and are less likely to induce phencyclidine-like attention deficits and disruption of sensomotor gating. Meanwhile, these drugs retain most of the potentially useful properties, including anxiolytic and antidepressant effects.  相似文献   

20.
Xiong ZQ  McNamara JO 《Neuron》2002,36(3):363-374
Insidious attack of cortical neurons by complement has been implicated in Alzheimer's and other neurodegenerative diseases. Excitotoxicity, triggered by excessive activation of glutamate receptors, has been implicated in neuronal death following diverse insults, including ischemia and seizures. Clinical studies suggested that a minimal excitotoxic insult might sensitize neurons to complement attack. We found that fleeting activation of ionotropic glutamate receptors sensitizes neurons but not astrocytes to complement attack. The complement molecule effecting cytotoxicity was the membrane attack complex. The site within the complement cascade at which sensitization was effected was the membrane attack pathway. Sensitization mediated by glutamate receptor activation required Ca(2+)(o) and generation of reactive oxygen species. These in vitro findings predict that a fleeting excitotoxic insult could act synergistically with complement to destroy cortical neurons and accelerate neurological deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号