首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aromatic boronic acids are reversible inhibitors of the recently classified class C beta-lactamases. The boronic acids studied include ortho-, meta- and para-methyl-, -hydroxymethyl- and -formyl-phenylboronic acid. The beta-lactamases were chromosomally-encoded enzymes, one from Pseudomonas aeruginosa, and the other specified by the ampC gene of Escherichia coli. The inhibition may be correlated with our finding that these beta-lactamases are serine enzymes, i.e. their function entails the hydroxy group of a serine residue acting as a nucleophile.  相似文献   

2.
The interaction between six class C beta-lactamases and various penicillins has been studied. All the enzymes behaved in a very uniform manner. Benzylpenicillin exhibited relatively low kcat. values (14-75 s-1) but low values of Km resulted in high catalytic efficiencies [kcat./Km = 10 X 10(6)-75 X 10(6) M-1.s-1]. The kcat. values for ampicillin were 10-100-fold lower. Carbenicillin, oxacillin cloxacillin and methicillin were very poor substrates, exhibiting kcat. values between 1 x 10(-3) and 0.1 s-1. The Km values were correspondingly small. It could safely be hypothesized that, with all the tested substrates, deacylation was rate-limiting, resulting in acyl-enzyme accumulation.  相似文献   

3.
The enzymatic activity of Streptomyces griseus protease B (SGPB) was measured over pH range 8.4--11.5 using a specific new, chromophoric substrate N-succinyl-glycyl-glycyl-L-phenylalanine p-nitroanilide. It was found that the activity is dependent on ionization of a single group with apparent pK = 10.84, possibly lysine-125. Maleylation of the epsilon-amino group of this lysine was linearily associated with the loss of enzymatic activity. It is therefore suggested that the electrostatic interaction between the side chain of lysine-125 and the alpha-carboxyl group of the C-terminal tyrosine is crucial to the active conformation of the enzyme. In contrast the maleylation of the alpha-amino group of the N-terminal isoleucine was rapid but could not be correlated to the loss of activity.  相似文献   

4.
Various cephalosporins, cefoxitin, moxalactam, imipenem and aztreonam were studied as substrates of six class C beta-lactamases. Nitrocefin, cephaloridine, cefazolin, cephalothin and cephalexin were good substrates, with kcat. values ranging from 27 to 5000 s-1. Cefuroxime, cefotaxime and cefoxitin exhibited low kcat. values (0.010-1.7 s-1) and low Km values, which suggested a rate-limiting deacylation. Imipenem and aztreonam were even poorer substrates (kcat. 2 x 10(-4)-3 x 10(-2) s-1) and, in the presence of a reporter substrate, behaved as transient inactivators. With moxalactam, biphasic kinetics were observed, indicating a possible rearrangement of the acyl-enzyme.  相似文献   

5.
The catalytic properties of four class A beta-lactamases were studied with 24 different substrates. They exhibit a wide range of variation. Similarly, the amino acid sequences are also quite different. However, no relationships were found between the sequence similarities and the substrate profiles. Lags and bursts were observed with various compounds containing a large sterically hindered side chain. As a group, the enzymes could be distinguished from the class C beta-lactamases on the basis of the kappa cat. values for several substrates, particularly oxacillin, cloxacillin and carbenicillin. Surprisingly, that distinction was impossible with the kappa cat./Km values, which represent the rates of acylation of the active-site serine residue by the beta-lactam. For several cephalosporin substrates (e.g. cefuroxime and cefotaxime) class A enzymes consistently exhibited higher kappa cat. values than class C enzymes, thus belying the usual distinction between 'penicillinases' and 'cephalosporinases'. The problem of the repartition of class A beta-lactamases into sub-classes is discussed.  相似文献   

6.
Bacillus anthracis contains a class A (Bla1) and class B (Bla2) beta-lactamase, which confer resistance to beta-lactam antibiotics when expressed in Escherichia coli. In an effort to find new beta-lactamase inhibitors, several penicillin derivatives have been evaluated including experimental compounds incorporating a 6-mercaptomethyl group or a 6-pyridylmethylidene group, along with clavulanate and tazobactam, as inhibitors against Bla1 and Bla2. The 6-mercaptomethyl-substituted penicillins showed much greater activity against the zinc-containing Bla2 than Bla1. The compound that incorporated a 6-pyridylmethylidene substituent and a catecholic substituent at the 2' position was the most effective inhibitor of Bla1 with Ki=0.057 microM. Inhibitors containing iron-chelating functional groups have previously been shown to work in combination with antibiotics to inhibit growth of antibiotic-resistant bacteria expressing beta-lactamase. The development of similar compounds, incorporating these types of substituents, may help overcome resistance to currently used antibiotics.  相似文献   

7.
8.
9.
Molecular models for the Henry Michaelis complexes of Enterobacter cloacae, a class C beta-lactamase, with penicillin G and cephalotin have been constructed by using molecular mechanic calculations, based on the AMBER force field, to examine the molecular differentiation mechanisms between cephalosporins and penicillins in beta-lactamases. Ser318Ala and Thr316Ala mutations in both complexes and Asn346Ala and Thr316Ala/Asn346Ala double mutation in penicillin G complex have also been studied. Results confirm that Thr316, Ser318, and Asn346 play a crucial role in the substrate recognition, via their interactions with one of the oxygens of the antibiotic carboxyl group. Both mutation Ser318Ala and Thr316Ala strongly affect the correct binding of cephalotin to P99, the first mainly by precluding the discriminating salt bridge between carboxyl and serine OH groups, and the second one by the Ser318, Lys315, and Tyr150 spatial rearrangements. On the other hand, Ser318Ala mutation has little effect on penicillin G binding, but the Thr316Ala/Asn346Ala double mutation causes the departure of the antibiotic from the oxyanion hole. Molecular dynamic simulations allow us to interpret the experimental results of some class C and A beta-lactamases.  相似文献   

10.
A new beta-lactamase inhibitor, a methylidene penem having a 5,6-dihydro-8H-imidazo[2,1-c][1,4]oxazine heterocyclic substituent at the C6 position with a Z configuration, irreversibly inhibits both class A and class C serine beta-lactamases with IC(50) values of 0.4 and 9.0 nM for TEM-1 and SHV-1 (class A), respectively, and 4.8 nM in AmpC (class C) beta-lactamases. The compound also inhibits irreversibly the class C extended-spectrum GC1 beta-lactamase (IC(50) = 6.2 nM). High-resolution crystallographic structures of a reaction intermediate of (5R)-(6Z)-6-(5,6-dihydro-8H-imidazo[2,1-c][1,4]oxazin-2-ylmethylene)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-3-carboxylic acid 1 with the SHV-1 beta-lactamase and with the GC1 beta-lactamase have been determined by X-ray diffraction to resolutions of 1.10 and 1.38 A, respectively. The two complexes were refined to crystallographic R-factors (R(free)) of 0.141 (0.186) and 0.138 (0.202), respectively. Cryoquenching of the reaction of 1 with each beta-lactamase crystal produced a common, covalently bound intermediate. After acylation of the serine, a nucleophilic attack by the departing thiolate on the C6' atom yielded a novel seven-membered 1,4-thiazepine ring having R stereochemistry at the new C7 moiety. The orientation of this ring in each complex differs by a 180 degrees rotation about the bond to the acylated serine. The acyl ester bond is stabilized to hydrolysis through resonance stabilization with the dihydrothiazepine ring and by low occupancy or disorder of hydrolytic water molecules. In the class A complex, the buried water molecule on the alpha-face of the ester bond appears to be loosely bound or absent. In the class C complex, a water molecule on the beta-face is disordered and poorly activated for hydrolysis. Here, the acyl intermediate is unable to assist its own hydrolysis, as is thought to occur with many class C substrates.  相似文献   

11.
The pH-dependence and group modification of beta-lactamase I.   总被引:1,自引:0,他引:1       下载免费PDF全文
The pH-dependence of the kinetic parameters for the hydrolysis of the beta-lactam ring by beta-lactamase I (penicillinase, EC 3.5.2.6) was studied. Benzylpenicillin and ampicillin (6-[D(-)-alpha-aminophenylacetamido]penicillanic acid) were used. Both kcat. and kcat./Km for both substrates gave bell-shaped plots of parameter versus pH. The pH-dependence of kcat./Km for the two substrates gave the same value (8.6) for the higher apparent pK, and so this value may characterize a group on the free enzyme; the lower apparent pK values were about 5(4.85 for benzylpenicillin, 5.4 for ampicillin). For benzylpenicillin both kcat. and kcat./Km depended on pH in exactly the same way. The value of Km for benzylpenicillin was thus independent of pH, suggesting that ionization of the enzyme's catalytically important groups does not affect binding of this substrate. The pH-dependence of kcat. for ampicillin differed, however, presumably because of the polar group in the side chain. The hypothesis that the pK5 group is a carboxyl group was tested. Three reagents that normally react preferentially with carboxyl groups inactivated the enzyme: the reagents were Woodward's reagent K, a water-soluble carbodi-imide, and triethyloxonium fluoroborate. These findings tend to support the idea that a carboxylate group plays a part in the action of beta-lactamase I.  相似文献   

12.
Five 6-(1-hydroxyalkyl)penam sulfone derivatives and two 6-(hydroxymethyl)penams were synthesized for beta-lactamase inhibitor screens. The substituent effects and stereochemical requirements of 6alpha- and 6beta-(1-hydroxyalkyl) groups for the biological activity of penam sulfone derivatives were investigated. Of these substituents, only the 6beta-hydroxymethyl group of 15 improved the activity of sulbactam against both TEM-1 and AmpC beta-lactamases. The sulfone moiety is required for the enhancement of the beta-lactamase inhibitory activity. 6Beta-hydroxymethylsulbactam (15) was able to restore the activity of piperacillin in vitro and in vivo against various beta-lactamase producing microorganisms.  相似文献   

13.
Two stereoselective processes for the synthesis of novel 3,6-disubstituted penam sulfone derivatives were developed. One 6beta-(1-hydroxyethyl) and four 6beta-hydroxymethyl penam sulfone derivatives were synthesized. All four 6beta-(hydroxymethyl)penam sulfone derivatives demonstrated good IC50 against both TEM-1 and AmpC beta-lactamases. Of these, 6beta-hydroxymethyl penam sulfone derivative 25 was the most active inhibitor which was able to restore the activity of piperacillin in vitro and in vivo against both TEM-1 and AmpC beta-lactamases producing organisms.  相似文献   

14.
An acyl-enzyme was isolated from certain chromosomal beta-lactamases and a penicillin. The penicillin was cloxacillin which, although it is a substrate for these enzymes, has such a low kcat. that it functions as an inhibitor. The enzymes were from the mutant of Pseudomonas aeruginosa 18 S that produces the beta-lactamase constitutively [Flett, Curtis & Richmond (1976) J. Bacteriol. 127, 1585-1586; Berks, Redhead & Abraham (1982) J. Gen. Microbiol., in the press] and from Escherichia coli K-12 (the ampC beta-lactamase) [Boman, Nordström & Normak (1974) Ann. N.Y. Acad. Sci. 235, 569-586]. The acyl-enzymes have been degraded to determine the residue labelled, and the sequence around it. The residue labelled is serine. The sequences around the labelled serine in these two beta-lactamases are exceedingly similar. However, the sequences are quite different from those around the active site serine in the beta-lactamases previously studied. There is thus more than one class of serine beta-lactamases.  相似文献   

15.
Aminoacylase is a potent peptidase around pH 8.5. The pH dependence of the Km values reveals that only dipeptides with uncharged N-terminal amino acids are substrates of the enzyme. The Km values reflect the hydrophobicity of the N-terminal amino acids. Calculated on the basis of unprotonated peptides they are pH independent. Hydrophobic, deprotonated amino acids are competitive inhibitors of the enzyme, tryptophan and norleucine being the strongest inhibitors. Inhibitor constants with glycylalanine as substrate have been determined for several amino acids. From the present results it may be deduced that the N-terminal amino acids of dipeptides are bound at a strongly hydrophobic site.  相似文献   

16.
Beta-lactamases are responsible for resistance to penicillins and related beta-lactam compounds. Despite numerous studies, the identity of the general base involved in the acylation step is still unclear. It has been proposed, on the basis of a previous pKa calculation and analysis of structural data, that the unprotonated Lys73 in the active site could act as the general base. Using a continuum electrostatic model with an improved treatment of the multiple titration site problem, we calculated the pKa values of all titratable residues in the substrate-free TEM-1 and Bacillus licheniformis class A beta-lactamases. The pKa of Lys73 in both enzymes was computed to be above 10, in good agreement with recent experimental data on the TEM-1 beta-lactamase, but inconsistent with the proposal that Lys73 acts as the general base. Even when the closest titratable residue, Glu166, is mutated to a neutral residue, the predicted downward shift of the pKa of Lys73 shows that it is unlikely to act as a proton abstractor in either enzyme. These results support a mechanism in which the proton of the active Ser70 is transferred to the carboxylate group of Glu166.  相似文献   

17.
The pH-dependence of pepsin-catalysed reactions   总被引:10,自引:9,他引:1  
1. The pH-dependence of the pepsin-catalysed hydrolysis of three peptide substrates was studied by using a method for the continuous monitoring of the formation of ninhydrin-positive products. 2. Two peptide acid substrates, N-acetyl-l-phenylalanyl-l-phenylalanine and N-acetyl-l-phenylalanyl-l-phenylalanyl-glycine, show apparent pK(a) values of 1.1 and 3.5 in the plots of k(0)/K(m) versus pH. By contrast a neutral substrate, N-acetyl-l-phenylalanyl-l-phenylalanine amide, shows apparent pK(a) values of 1.0 and 4.7. 3. Together with the data of the preceding paper (Knowles, Sharp & Greenwell, 1969), these results are taken to indicate that the rate of pepsin-catalysed hydrolysis is controlled by the ionization of two groups, which on the free enzyme have apparent pK(a) values of 1.0 and 4.7. It is apparent that the anions of peptide acid substrates are not perceptibly bound to the enzyme, resulting in apparent pK(a) values of 3.5 for the dependence of k(0)/K(m) for these materials.  相似文献   

18.
A 6-alkylidiene penam sulfone, SA-1-204, is an efficient inhibitor of both SHV-1 and OXA-1 beta-lactamases with K(I) = 42 +/- 4 nm and 1.0 +/- 0.1 microm, respectively. To gain insight into the reaction chemistry of SA-1-204, the reactions between this inhibitor and SHV-1 and OXA-1 were studied by Raman spectroscopy in single crystals and in solution. Raman signatures characteristic of the unreacted beta-lactam ring show that in both phases the inhibitor binds as a noncovalent Michaelis-like complex. This complex is present as the major population for periods of up to an hour. On longer time scales, the Raman data show that beta-lactam ring opening eventually leads to a complex mixture of reaction products. However, the data clearly demonstrate that the key species for inhibition on the time scale of bacterial half-lives is the noncovalent complex preceding acylation.  相似文献   

19.
The crystallographic structure of the Enterobacter cloacae GC1 extended-spectrum class C beta-lactamase, inhibited by a new 7-alkylidenecephalosporin sulfone, has been determined by X-ray diffraction at 100 K to a resolution of 1.6 A. The crystal structure was solved by molecular replacement using the unliganded structure [Crichlow et al. (1999) Biochemistry 38, 10256-10261] and refined to a crystallographic R-factor equal to 0.183 (R(free) 0.208). Cryoquenching of the reaction of the sulfone with the enzyme produced an intermediate that is covalently bound via Ser64. After acylation of the beta-lactam ring, the dihydrothiazine dioxide ring opened with departure of the sulfinate. Nucleophilic attack of a side chain pyridine nitrogen atom on the C6 atom of the resultant imine yielded a bicyclic aromatic system which helps to stabilize the acyl enzyme to hydrolysis. A structural assist to this resonance stabilization is the positioning of the anionic sulfinate group between the probable catalytic base (Tyr150) and the acyl ester bond so as to block the approach of a potentially deacylating water molecule. Comparison of the liganded and unliganded protein structures showed that a major movement (up to 7 A) and refolding of part of the Omega-loop (215-224) accompanies the binding of the inhibitor. This conformational flexibility in the Omega-loop may form the basis of an extended-spectrum activity of class C beta-lactamases against modern cephalosporins.  相似文献   

20.
The pH-dependence of selected 13C chemical shifts reflects the state of ionization of the imidazole ring in both imidazole and L-histidine. Titration of the amino and carboxyl groups of histidine also perturbs the shifts. The coupling constants 1J (13C(2),H) and 1J (13C(5),H) for both compounds also vary with pH, but in L-histidine these constants are relatively insensitive to the titration of groups outside the imidazole ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号