首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.  相似文献   

2.
Penicillin acylase of Escherichia coli catalyses the hydrolysis and synthesis of beta-lactam antibiotics. To study the role of hydrophobic residues in these reactions, we have mutated three active-site phenylalanines. Mutation of alphaF146, betaF24 and betaF57 to Tyr, Trp, Ala or Leu yielded mutants that were still capable of hydrolysing the chromogenic substrate 2-nitro-5-[(phenylacetyl)amino]-benzoic acid. Mutations on positions alphaF146 and betaF24 influenced both the hydrolytic and acyl transfer activity. This caused changes in the transferase/hydrolase ratios, ranging from a 40-fold decrease for alphaF146Y and alphaF146W to a threefold increase for alphaF146L and betaF24A, using 6-aminopenicillanic acid as the nucleophile. Further analysis of the betaF24A mutant showed that it had specificity constants (kcat/Km) for p-hydroxyphenylglycine methyl ester and phenylglycine methyl ester that were similar to the wild-type values, whereas the specificity constants for p-hydroxyphenylglycine amide and phenylglycine amide had decreased 10-fold, due to a decreased kcat value. A low amidase activity was also observed for the semisynthetic penicillins amoxicillin and ampicillin and the cephalosporins cefadroxil and cephalexin, for which the kcat values were fivefold to 10-fold lower than the wild-type values. The reduced specificity for the product and the high initial transferase/hydrolase ratio of betaF24A resulted in high yields in acyl transfer reactions.  相似文献   

3.
Ser130, Asp131 and Asn132 ('SDN') are highly conserved residues in class A beta-lactamases forming one wall of the active-site cavity. All three residues of the SDN loop in Streptomyces albus G beta-lactamase were modified by site-directed mutagenesis. The mutant proteins were expressed in Streptomyces lividans, purified from culture supernatants and their kinetic parameters were determined for several substrates. Ser130 was substituted by Asn, Ala and Gly. The first modification yielded an almost totally inactive protein, whereas the smaller-side-chain mutants (A and G) retained some activity, but were less stable than the wild-type enzyme. Ser130 might thus be involved in maintaining the structure of the active-site cavity. Mutations of Asp131 into Glu and Gly proved to be highly detrimental to enzyme stability, reflecting significant structural perturbations. Mutation of Asn132 into Ala resulted in a dramatically decreased enzymic activity (more than 100-fold) especially toward cephalosporin substrates, kcat. being the most affected parameter, which would indicate a role of Asn132 in transition-state stabilization rather than in ground-state binding. Comparison of the N132A and the previously described N132S mutant enzymes underline the importance of an H-bond-forming residue at position 132 for the catalytic process.  相似文献   

4.
Sun T  Bethel CR  Bonomo RA  Knox JR 《Biochemistry》2004,43(44):14111-14117
A bacterial response to the clinical use of class A beta-lactamase inhibitors such as tazobactam and clavulanic acid is the expression of variant beta-lactamases with weaker binding affinities for these mechanism-based inhibitors. Some of these inhibitor-resistant variants contain a glycine mutation at Ser130, a conserved active site residue known to be adventitiously involved in the inhibition mechanism. The crystallographic structure of a complex of tazobactam with the Ser130Gly variant of the class A SHV-1 beta-lactamase has been determined to 1.8 A resolution. Two reaction intermediates are observed. The primary intermediate is an acyclic species bound to the reactive Ser70. It is poorly primed for catalytic hydrolysis because its ester carbonyl group is completely displaced from the enzyme's oxyanion hole. A smaller fraction of the enzyme contains a Ser70-bound aldehyde resulting from hydrolytic loss of the triazoyl-sulfinyl amino acid moiety from the primary species. This first structure of a class A beta-lactamase lacking Ser130, the side chain of which functions in beta-lactam binding and possibly in catalysis, gives crystallographic evidence that the acylation step of beta-lactam turnover can occur without Ser130. Unexpectedly, the crystal structure of the uncomplexed Ser130Gly enzyme, also determined to 1.8 A resolution, shows that a critical Glu166-activated water molecule is missing from the catalytic site. Comparison of this uncomplexed variant with the wild-type structure reveals that Ser130 is required for orienting the side chain of Ser70 and ensuring the hydrogen bonding of Ser70 to both Lys73 and the catalytic water molecule.  相似文献   

5.
Molecular models for the Henry Michaelis complexes of Enterobacter cloacae, a class C beta-lactamase, with penicillin G and cephalotin have been constructed by using molecular mechanic calculations, based on the AMBER force field, to examine the molecular differentiation mechanisms between cephalosporins and penicillins in beta-lactamases. Ser318Ala and Thr316Ala mutations in both complexes and Asn346Ala and Thr316Ala/Asn346Ala double mutation in penicillin G complex have also been studied. Results confirm that Thr316, Ser318, and Asn346 play a crucial role in the substrate recognition, via their interactions with one of the oxygens of the antibiotic carboxyl group. Both mutation Ser318Ala and Thr316Ala strongly affect the correct binding of cephalotin to P99, the first mainly by precluding the discriminating salt bridge between carboxyl and serine OH groups, and the second one by the Ser318, Lys315, and Tyr150 spatial rearrangements. On the other hand, Ser318Ala mutation has little effect on penicillin G binding, but the Thr316Ala/Asn346Ala double mutation causes the departure of the antibiotic from the oxyanion hole. Molecular dynamic simulations allow us to interpret the experimental results of some class C and A beta-lactamases.  相似文献   

6.
Bacterial beta-lactamases hydrolyze beta-lactam antibiotics such as penicillins and cephalosporins. The TEM-type class A beta-lactamase SHV-2 is a natural variant that exhibits activity against third-generation cephalosporins normally resistant to hydrolysis by class A enzymes. SHV-2 contains a single Gly238Ser change relative to the wild-type enzyme SHV-1. Crystallographic refinement of a model including hydrogen atoms gave R and R(free) of 12.4% and 15.0% for data to 0.91 A resolution. The hydrogen atom on the O(gamma) atom of the reactive Ser70 is clearly seen for the first time, bridging to the water molecule activated by Glu166. Though hydrogen atoms on the nearby Lys73 are not seen, this observation of the Ser70 hydrogen atom and the hydrogen bonding pattern around Lys73 indicate that Lys73 is protonated. These findings support a role for the Glu166-water couple, rather than Lys73, as the general base in the deprotonation of Ser70 in the acylation process of class A beta-lactamases. Overlay of SHV-2 with SHV-1 shows a significant 1-3 A displacement in the 238-242 beta-strand-turn segment, making the beta-lactam binding site more open to newer cephalosporins with large C7 substituents and thereby expanding the substrate spectrum of the variant enzyme. The OH group of the buried Ser238 side-chain hydrogen bonds to the main-chain CO of Asn170 on the Omega loop, that is unaltered in position relative to SHV-1. This structural role for Ser238 in protein-protein binding makes less likely its hydrogen bonding to oximino cephalosporins such as cefotaxime or ceftazidime.  相似文献   

7.
Barley limit dextrinase (HvLD) of glycoside hydrolase family 13 is the sole enzyme hydrolysing α-1,6-glucosidic linkages from starch in the germinating seed. Surprisingly, HvLD shows 150- and 7-fold higher activity towards pullulan and β-limit dextrin, respectively, than amylopectin. This is investigated by mutational analysis of residues in the N-terminal CBM-21-like domain (Ser14Arg, His108Arg, Ser14Arg/His108Arg) and at the outer subsites +2 (Phe553Gly) and +3 (Phe620Ala, Asp621Ala, Phe620Ala/Asp621Ala) of the active site. The Ser14 and His108 mutants mimic natural LD variants from sorghum and rice with elevated enzymatic activity. Although situated about 40 Å from the active site, the single mutants had 15–40% catalytic efficiency compared to wild type for the three polysaccharides and the double mutant retained 27% activity for β-limit dextrin and 64% for pullulan and amylopectin. These three mutants hydrolysed 4,6-O-benzylidene-4-nitrophenyl-63-α-d-maltotriosyl-maltotriose (BPNPG3G3) with 51–109% of wild-type activity. The results highlight that the N-terminal CBM21-like domain plays a role in activity. Phe553 and the highly conserved Trp512 sandwich a substrate main chain glucosyl residue at subsite +2 of the active site, while substrate contacts of Phe620 and Asp621 at subsite +3 are less prominent. Phe553Gly showed 47% and 25% activity on pullulan and BPNPG3G3, respectively having a main role at subsite +2. By contrast at subsite +3, Asp621Ala increased activity on pullulan by 2.4-fold, while Phe620Ala/Asp621Ala retained only 7% activity on pullulan albeit showed 25% activity towards BPNPG3G3. This outcome supports that the outer substrate binding area harbours preference determinants for the branched substrates amylopectin and β-limit dextrin.  相似文献   

8.
Glycosylphosphatidylinositol-specific phospholipase C (GPtdIns-PLC) is found in the protozoan parasite Trypanosoma brucei. A region of protein sequence similarity exists between the protozoan enzyme and eubacterial phosphatidylinositol-phospholipases C. The functional relevance of Cys80 and Gln81 of GPtdIns-PLC, both in this region, was tested with a panel of mutations at each position. Gln81Glu, Gln81Ala, Gln81Gly, Gln81Lys and Gln81Leu mutants were inactive. Cleavage of GPtdIns was detectable in Gln81Asn, although the specific activity decreased 500-fold, and kcat was reduced 50-fold. Thus an amide side-chain at residue 81 is essential for catalysis by GPtdIns-PLC. Sulfhydryl reagents inactivate GPtdIns-PLC, suggesting that a Cys could be close to the enzyme active site. Surprisingly, p-chloromercuriphenyl sulfonate (p-CMPS) is significantly more potent than N-ethylmaleimide, the less bulky compound. This knowledge prompted us to test whether replacement of Cys80 with an amino acid possessing a bulky side-chain would inactivate GPtdIns-PLC: Cys80Ala, Cys80Thr, Cys80Phe, Cys184Ala, and Cys269-270-273Ser were constructed for that purpose. Cys80Phe lacked enzyme activity, while Cys80Ala, Cys80Thr and Cys269-270-273Ser retained 33 to 100% of wild-type activity. Interestingly, the Cys80Ala and Cys80Thr mutants became resistant to p-CMPS, as predicted if the sulfhydryl reagent reacted with Cys80 in the wild-type enzyme to form a cysteinyl mercurylphenylsulfonate moiety, a bulky adduct that inactivated GPtdIns-PLC, similar to the Cys80Phe mutation. We conclude that a bulky side-chain (or adduct) at position 80 of GPtdIns-PLC abolishes enzyme activity. Together, these observations place Cys80 and Gln81 at, or close to, the active site of GPtdIns-PLC from T. brucei.  相似文献   

9.
Engineering a novel beta-lactamase by a single point mutation   总被引:2,自引:0,他引:2  
beta-Lactamases are widespread and efficient bacterial enzymes which play a major role in bacterial resistance to penicillins and cephalosporins. In order to elucidate the role of the residues lying in a conserved loop of the enzymatic cavity of the active-site serine Streptomyces albus G beta-lactamase, modified proteins were produced by oligo-directed mutagenesis. Mutation of Asn116, which lies on one side of the active site cavity pointing to the substrate-binding site, into a serine residue resulted in spectacular modifications of the specificity profile of the enzyme. That replacement yielded an enzyme with a nearly unchanged activity towards good penicillin substrates. In sharp contrast its efficiency in hydrolysing cephalosporins was drastically reduced, the best substrates suffering the largest decrease in the second-order rate constant for serine acylation. In fact that single mutation generated a truly new enzyme behaving exclusively as a penicillinase, a situation which is never encountered to the same degree in any of the numerous naturally occurring variants of class A beta-lactamases.  相似文献   

10.
The role of the non-conserved amino acid residue at position 104 of the class A beta-lactamases, which comprises a highly conserved sequence of amino acids at the active sites of these enzymes, in both the hydrolysis of beta-lactam substrates and inactivation by mechanism-based inhibitors was investigated. Site-directed mutagenesis was performed on the penPC gene encoding the Bacillus cereus 569/H beta-lactamase I to replace Asp104 with the corresponding Staphylococcus aureus PC1 residue Ala104. Kinetic data obtained with the purified Asp104Ala B. cereus 569/H beta-lactamase I was compared to that obtained from the wild-type B. cereus and S. aureus enzymes. Replacement of amino acid residue 104 had little effect on the Michaelis parameters for the hydrolysis of both S- and A-type penicillins. Relative to wild-type enzyme, the Asp104Ala beta-lactamase I had 2-fold higher Km values for benzylpenicillin and methicillin, but negligible difference in Km for ampicillin and oxacillin. However, kcat values were also slightly increased resulting in little change in catalytic efficiency, kcat/Km. In contrast, the Asp104Ala beta-lactamase I became more like the S. aureus enzyme in its response to the mechanism-based inhibitors clavulanic acid and 6-beta-(trifluoromethane sulfonyl)amido-penicillanic acid sulfone with respect to both response to the inhibitors and subsequent enzymatic properties. Based on the known three-dimensional structures of the Bacillus licheniformis 749/C, Escherichia coli TEM and S. aureus PC1 beta-lactamases, a model for the role of the non-conserved residue at position 104 in the process of inactivation by mechanism-based inhibitors is proposed.  相似文献   

11.
The central role of human pancreatic glucokinase in insulin secretion and, consequently, in maintenance of blood glucose levels has prompted investigation into identification of ATP-binding site residues and examination of ATP- and glucose-binding interactions. Because glucokinase has been resistant to crystallization, computer generated homology models were developed based on the X-ray crystal structure of the COOH-terminal domain of human brain hexokinase 1 bound to glucose and ADP or glucose and glucose-6-phosphate. Human pancreatic glucokinase mutants were designed based upon these models and on ATPase domain sequence conservation to identify and characterize potential glucose and ATP-binding sites. Specifically, mutants Asp78Ala, Thr82Ala, Lys90Ala, Lys102Ala, Gly227Ala, Thr228Ala, Ser336Leu, Ser411Ala, and Ser411Leu were constructed, expressed, purified, and kinetically characterized under steady-state conditions. Compared to their respective wild type controls, several mutants demonstrated dramatic changes in V(max), cooperativity of glucose binding and S(0.5) for ATP and glucose. Results suggest a role for Asp78, Thr82, Gly227, Thr228, and Ser336 in ATP binding and indicate these residues are essential for glucose phosphorylation by human pancreatic glucokinase.  相似文献   

12.
S A Berger  P R Evans 《Biochemistry》1992,31(38):9237-9242
Six active site mutants of Escherichia coli phosphofructokinase have been constructed and characterized using steady-state kinetics. All but one of the mutants (ES222) have significantly lower maximal activity, implicating these residues in the catalytic process. Replacement of Asp127, the key catalytic residue in the forward reaction with Glu, results in an enzyme with wild-type cooperative and allosteric behavior but severely decreased Fru6P binding. Replacement of the same residue with Tyr abolishes cooperativity while retaining sensitivity to allosteric inhibition and activation. Thus, this mutant has uncoupled homotropic from heterotropic allostery. Mutation of Asp103 to Ala results in an enzyme which retains wild-type Fru6P-binding characteristics with reduced activity. GDP, which allosterically activates the wild-type enzyme, acts as a mixed inhibitor for this mutant. Mutation of Thr125 to Ala and Asp129 to Ser produces mutants with impaired Fru6P binding and decreased cooperativity. In the presence of the activator GDP, both these mutants display apparent negative cooperativity. In addition, ATP binding is now allosterically altered by GDP. These results extend the number of active site residues known to participate in the catalytic process and help to define the mechanisms behind catalysis and homotropic and heterotropic allostery.  相似文献   

13.
The structure of the N-terminal domain of enzyme I complexed with histidine-containing protein (HPr) has been described by multi-dimensional NMR. Residues in HPr involved in binding were identified by intermolecular nuclear Overhauser effects (Garrett et al. 1999). Most of these residues have been mutated, and the effect of these changes on binding has been assessed by enzyme I kinetic measurement. Changes to Thr16, Arg17, Lys24, Lys27, Ser46, Leu47, Lys49, Gln51, and Thr56 result in increases to the HPr Km of enzyme I, which would be compatible with changes in binding. Except for mutations to His15 and Arg17, very little or no change in Vmax was found. Alanine replacements for Gln21, Thr52, and Leu55 have no effect. The mutation Lys40Ala also affects HPr Km of enzyme I; residue 40 is contiguous with the enzyme I binding site in HPr and was not identified by NMR. The mutations leading to a reduction in the size of the side chain (Thr16Ala, Arg17Gly, Lys24Ala, Lys27Ala, and Lys49Gly) caused relatively large increases in Km (>5-fold) indicating these residues have more significant roles in binding to enzyme I. Acidic replacement at Ser46 caused very large increases (>100-fold), while Gln51Glu gave a 3-fold increase in Km. While these results essentially concur with the identification of residues by the NMR experiments, the apparent importance of individual residues as determined by mutation and kinetic measurement does not necessarily correspond with the number of contacts derived from observed intermolecular nuclear Overhauser effects.  相似文献   

14.
Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants.  相似文献   

15.
Ke Zhou 《Phytochemistry》2009,70(3):366-42847
Terpene synthases (TPS) require divalent metal ion co-factors, typically magnesium, that are bound by a canonical DDXXD motif, as well as a putative second, seemingly less well conserved and understood (N/D)DXX(S/T)XXXE motif. Given the role of the Ser/Thr side chain hydroxyl group in ligating one of the three catalytically requisite divalent metal ions and the loss of catalytic activity upon substitution with Ala, it is surprising that Gly is frequently found in this ‘middle’ position of the putative second divalent metal binding motif in plant TPS. Herein we report mutational investigation of this discrepancy in a model plant diterpene cyclase, abietadiene synthase from Abies grandis (AgAS). Substitution of the corresponding Thr in AgAS with Ser or Gly decreased catalytic activity much less than substitution with Ala. We speculate that the ability of Gly to partially restore activity relative to Ala substitution for Ser/Thr stems from the associated reduction in steric volume enabling a water molecule to substitute for the hydroxyl group from Ser/Thr, potentially in a divalent metal ion coordination sphere. In any case, our results are consistent with the observed conservation pattern for this putative second divalent metal ion binding motif in plant TPS.  相似文献   

16.
We previously identified that four of five putative N-linked glycosylation sites of human endothelial lipase (EL) are utilized and suggested that the substitution of asparagine-116 (Asn-116) with alanine (Ala) (N116A) increased the hydrolytic activity of EL. The current study demonstrates that mutagenesis of either Asn-116 to threonine (Thr) or Thr-118 to Ala also disrupted the glycosylation of EL and enhanced catalytic activity toward synthetic substrates by 3-fold versus wild-type EL. Furthermore, we assessed the hydrolysis of native lipoprotein lipids by EL-N116A. EL-N116A exhibited a 5-fold increase in LDL hydrolysis and a 1.8-fold increase in HDL2 hydrolysis. Consistent with these observations, adenovirus-mediated expression of EL-N116A in mice significantly reduced the levels of both LDL and HDL cholesterol beyond the reductions observed by the expression of wild-type EL alone. Finally, we introduced Asn-116 of EL into the analogous positions within LPL and HL, resulting in N-linked glycosylation at this site. Glycosylation at this site suppressed the LPL hydrolysis of synthetic substrates, LDL, HDL2, and HDL3 but had little effect on HL activity. These data suggest that N-linked glycosylation at Asn-116 reduces the ability of EL to hydrolyze lipids in LDL and HDL2.  相似文献   

17.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

18.
Lysine 234 is a residue highly conserved in all beta-lactamases, except in the carbenicillin-hydrolyzing enzymes, in which it is replaced by an arginine. Informational suppression has been used to create amino acid substitutions at this position in the broad spectrum Escherichia coli beta-lactamase TEM-1, in order to elucidate the role of this residue which lies on the wall at the closed end of the active site cavity. The mutants K234R and K234T were constructed and their kinetic constants measured. Replacement of lysine 234 by arginine yields an enzyme with similar activity toward cephalosporins and most penicillins, except toward the carboxypenicillins for which the presence of the guanidine group enhances the transition state binding. The removal of the basic group in the mutant K234T yields a protein variant which retains a low activity toward penicillins, but losts drastically its ability to hydrolyze cephalosporins. Moreover, these two mutations largely decreased the affinity of the enzyme for penicillins (10-fold for K234R and 50-fold for K234T). This can be correlated with the disruption of the predicted electrostatic binding between the C3 carboxylic group of penicillins and the amine function of the lysine. Therefore, lysine 234 in the E. coli beta-lactamase TEM-1 is involved both in the initial recognition of the substrate and in transition state stabilization.  相似文献   

19.
Human lysozyme is a monomeric secretory protein composed of 130 amino acid residues, with four intramolecular disulfide bonds and no oligosaccharides. In this study, a mutant protein, [Ala128] lysozyme, which cannot fold because it lacks a disulfide bond, Cys6-Cys128, was expressed in mouse fibroblasts and was found to be mostly degraded in the cells, whereas the control wild-type lysozyme was quantitatively secreted into the media. The degradation of [Ala128]lysozyme was independent of the transport from the endoplasmic reticulum to the Golgi apparatus. The degradation was greatly inhibited by incubation of cells at 15 degrees C, but was minimally affected by treatment of cells with the lysosomotropic agent, chloroquine, implying a non-lysosomal process. Additional mutations (Gly48-->Ser or Met29-->Thr) were created to make asparagine-linked (N-linked) glycosylation site in the [Ala128]lysozyme, and the resultant double mutants, [Ser48, Ala128]lysozyme and [Thr29, Ala128]lysozyme, were analyzed with respect to their intracellular degradation. These mutant proteins were susceptible to N-linked glycosylation, and were degraded in a similar manner to that of [Ala128] lysozyme, except that the onset of degradation of [Ser48, Ala128]lysozyme and [Thr29, Ala128] lysozyme, but not of [Ala128]lysozyme, was preceded by a lag period of up to 60 min. Furthermore, the degradative double mutants, [Ser48, Ala128]lysozyme and [Thr29, Ala128]lysozyme, were glycosylated post-translationally as well as co-translationally. These observations suggest that there is some interaction between the mechanisms of glycosylation and degradation.  相似文献   

20.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号