首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metarhizium anisopliae is an entomopathogenic fungus well characterized for the biocontrol of a wide range of plagues. Its pathogenicity depends on the secretion of hydrolytic enzymes that degrade the host cuticle. To identify proteins involved in the infection process and in host specify, immunoproteomic analysis was performed using antiserum produced against crude extract of M. anisopliae cultured in the presence of Rhipicephalus (Boophilus) microplus and Dysdercus peruvianus cuticles. Spots detected using antisera produced against M. anisopliae cultured in cuticles and spore surface proteins, but not with antiserum against M. anisopliae cultured in glucose, were identified so as to give insights about the infection process. An MS/MS allowed the identification of proteases, like elastase, trypsin, chymotrypsin, carboxypeptidase and subtilisin (Pr1A, Pr1I and PR1J), chitinases, DNase I and proline-rich protein. Chymotrypsin and Pr1I were inferred as host specific, being recognized in D. peruvianus infection only. This research represents an important contribution to the understanding the adaptation mechanisms of M. anisopliae to different hosts.  相似文献   

2.
The fungi Pochonia chlamydosporia and Pochonia rubescens are parasites of nematode eggs and thus are biocontrol agents of nematodes. Proteolytic enzymes such as the S8 proteases VCP1 and P32, secreted during the pathogenesis of nematode eggs, are major virulence factors in these fungi. Recently, expression of these enzymes and of SCP1, a new putative S10 carboxypeptidase, was detected during endophytic colonization of barley roots by these fungi. In our study, we cloned the genomic and mRNA sequences encoding P32 from P. rubescens and SCP1 from P. chlamydosporia. P32 showed a high homology with the serine proteases Pr1A from the entomopathogenic fungus Metarhizium anisopliae and VCP1 from P. chlamydosporia (86% and 76% identity, respectively). However, the catalytic pocket of P32 showed differences in the amino acids of the substrate-recognition sites compared with the catalytic pockets of Pr1A and VCP1 proteases. Phylogenetic analysis of P32 suggests a common ancestor with protease Pr1A. SCP1 displays the characteristic features of a member of the S10 family of serine proteases. Phylogenetic comparisons show that SCP1 and other carboxypeptidases from filamentous fungi have an origin different from that of yeast vacuolar serine carboxypeptidases. Understanding protease genes from nematophagous fungi is crucial for enhancing the biocontrol potential of these organisms.  相似文献   

3.
Abstract A Beauveria bassiana extracellular subtilisin-like serine endoprotease is a potential virulence factor by virtue of its activity against insect cuticles. A cDNA clone of the protease was isolated from mycelia of B. bassiana grown on cuticle/chitin cultures. The amino acid sequence of this gene was compared to that of Metarhizium anisopliae Pr1, the only pathogenicity determinant so far described from an entomopathogenic fungus, and proteinase K, isolated from Tritirachium album , a saprophytic fungus. The cDNA sequence revealed that B. bassiana Prl is synthesized as a large precursor ( M r 37 460) containing a signal peptide, a propeptide and the mature protein predicted to have an M r of 26 832.  相似文献   

4.
Restriction fragment length polymorphisms (RFLP) were examined in three isoforms of a gene family encoding subtilisin-like proteases (Pr1A, Pr1B, and Pr1C) in several isolates of the entomopathogenic fungus Metarhizium anisopliae. RFLP variation was not observed in any of the Pr1 genes from isolates within the same genetically related group. Between genetically related groups and between isolates from disparate geographical areas, the greatest variation in RFLP patterns was observed for Pr1A. When variation does occur at Pr1B and Pr1C, it was generally observed at an EcoRI site. Metarhizium anisopliae var. majus strain 473 and a M. flavoviride isolate were most dissimilar in RFLP patterns at all Pr1 genes when compared to the M. anisopliae strains. We suggest that Pr1 genes represent a gene family of subtilisin-like proteases and that the Pr1A gene encodes for the ancestral subtilisin-like protease which has subsequently duplicated and rearranged within the genome.  相似文献   

5.
Metarhizium anisopliae strains V245 and V275 differed in their stability when grown on different nutrient media. V275 produced fewer sectors than V245 irrespective of the cultural conditions. Both strains produced more sectors on nutrient rich media. At least four distinct types of sectors were produced in vitro. Most sectors were sterile or sporulated poorly and produced significantly lower quantities of virulence determining enzymes like Pr1. Real-time PCR confirmed differential expression of the pathogenicity-related genes pr1 A, ste 1, try 1, and chy 1 encoding for the subtilisin Pr1A, esterase, trypsin and chymotrypsin, respectively. API-ZYM revealed that the enzyme profiles of sectors differed from those of the parent cultures and also from other sectors. Sectors of M. anisopliae also produced less destruxins than the parent cultures independent of the strain.  相似文献   

6.
Repeated subculturing caused rapid changes in the spore surface properties and virulence of Metarhizium anisopliae. Of the two strains evaluated, M. anisopliae V245 attenuated more rapidly than V275. Electrophoretic mobility and Radial Flow Chamber assays were used for the first time to generate qualitative and quantitative information on the adhesive forces of M. anisopliae conidia. Independent of strain, adhesion, hydrophobicity and spore-bound Pr1 declined after the first subculture; however, spore surface charge decline was erratic. Adhesion and hydrophobicity stabilized after the third subculture, whereas spore-bound Pr1 continues to decline following repeated subculturing. Decline in spore bound Pr1 was directly correlated with decline in virulence, however, such correlation with adhesion, hydrophobicity or surface charge could not be established. Because spore-bound Pr1 activities were directly correlated with M. anisopliae virulence; it could be used as a quality-control marker to monitor changes in virulence.  相似文献   

7.
本文报道了不同孢子浓度下黄绿绿僵菌对褐飞虱和白背飞虱不同发育阶段的易感性和毒力的研究。实验设10.5孢子/mm2,116.7孢子/mm2和1027.1孢子/mm2三种孢子剂量,两种飞虱分为幼龄若虫(1龄和2龄若虫)、高龄若虫(3、4、5龄若虫)和成虫三个发育阶段。实验发现褐飞虱与白背飞虱的三个发育阶段对黄绿绿僵菌的不同浓度的孢子液有不同程度的易感性。黄绿绿僵菌对褐飞虱幼龄若虫的毒力指标LT50在三种孢子剂量下依次为>21、20.82和16.55;对高龄若虫的LT50在三种孢子剂量下依次为17.68、15.49和13.98;而对成虫的LT50在三种孢子剂量下依次为17.10、12.57和9.14。黄绿绿僵菌对白背飞虱幼龄若虫的毒力指标LT50在三种孢子剂量下依次为>21、17.29和13.13;对高龄若虫的LT50在三种孢子剂量下依次为16.94、15.02和13.03;而对白背飞虱成虫的LT50在三种孢子剂量下依次为12.78、10.16和7.64。二者的成虫的易感性比若虫的易感性强,高龄若虫的易感性比幼龄若虫的强。白背飞虱比褐飞虱对黄绿绿僵菌更加敏感。二者的死亡率随孢子浓度的增大而增大。  相似文献   

8.
Abstract  The susceptibility and virulence of entomopathogenic fungus Metarhizium anisopliae var. acridum to the stages of brown planthopper (BPH), Nilaparvata lugens (Stål) and whitebacked planthopper (WBPH), Sogatella furcifera (Horvath) were investigated under laboratory conditions. Three dosages of M. anisopliae var. acridum ranging from 10.5, 116.3 and 1027.1 conidial/mm2 were used in the experiment. The tested stages of host included three developmental stages, young nymphs (1–2 instars), old nymphs (3–5 instars) and adults. It was found that all tested stages of the planthoppers were susceptible to the fungal infection. The degree of virulence LT50 of M. anisopliae var. acridum against young nymphs of N. lugens are >21, 20.82 and 16.55, respectively with the 3 dosages, the LT50 of the fungus against the old nymphs are 17.68, 15.49 and 13.98, respectively with the 3 dosages; the LT50 of the fungus against the adults are 17.10, 12.57 and 9.14 respectively with the 3 dosages. The degree of virulence LT50 of M. anisopliae var. acridum on young nymphs of S. furcifera are >21, 17.29 and 13.13, respectively with the 3 dosages ; the LT50 of the fungus against the old nymphs are 16.94, 15.02 and 13.03, respectively with the 3 dosages; the LT50 of the fungus against the adults are 12.78, 10.16 and 7.64, respectively with the 3 dosages. Adults were more susceptible to M. anisopliae var. acridum infection than their nymphs and the young nymphs were most resistant to the fungal infection. The cumulative mortality of each stage was dosage-dependent. Of all the developmental stages, WBPH was more susceptible than BPH to M. anisopliae var. acridum infection with the same dosages.  相似文献   

9.
The filamentous fungus Metarhizium anisopliae is a well-characterized, arthropod pathogen used in the biological control of arthropod pests. Studies on the regulation of enzymes related to host infection such as proteases and chitinases have been reported but little is known about regulation of lipolytic enzymes in this fungus. Here we present the effects of different carbon sources such as components of the arthropod cuticle on the secretion of lipolytic enzymes by M. anisopliae. Differences in the induction of lipolytic activity were observed between the several carbon sources tested. Higher activities of lipase or lipase/esterase were found in culture media containing the arthropod integument components chitin and cholesteryl stearate. Several bands of lipolytic activity were also detected in zymograms, thus suggesting an important set of lipolytic enzymes secreted by the fungus. These results show that the fungus can modulate the secretion of lipolytic activity in response to host integument components, thus reinforcing the potential role of these enzymes during M. anisopliae infection.  相似文献   

10.
The pathogenicity of the only documented ‘aphid’ strain of Metarrhizium anisopliae for the aphid, Macrosiphoniella sanborni, was established by experimental infection. Its aphicidal potential was assessed by conducting parallel experiments with Verticillium lecanii, a fungus of proven efficacy in controlling aphids. The spore germination, growth and sporulation rates of M. anisopliae were slower than V. lecanii and were most likely the principal factors determining the higher LC., values in bioassay and slower propagation of this fungus amongst aphid populations. It is concluded that M. anisopliae, except perhaps in the salt marsh habitat from which it was originally isolated, would not prove as useful an agent as V. lecanii in biological control of aphids.  相似文献   

11.
Two chymoelastases and three trypsinlike proteases were separated from culture filtrates of the entomopathogen Metarhizium anisopliae. A chymoelastase (Pr1) (pI 10.3 Mr 25,000) and trypsin (Pr2) (pI 4.42, Mr 28,500) were purified to homogeneity by ammonium sulphate precipitation, isoelectric focusing, and affinity chromatography. Inhibition studies showed that both enzymes possessed essential serine and histidine residues in the active site. Pr1 shows greater activity than Pr2 or mammalian enzymes against locust cuticle and also possesses activity vs elastin. Pr1 shows a broad primary specificity toward amino acids with hydrophobic side groups in synthetic ester and amide substrates. The kinetic properties of Pr1 demonstrate a preference for extended peptide chains with the active site recognising at least five substrate residues. The S5 and S4 subsites show a preference for negatively charged succinyl and hydrophobic acetyl groups, respectively. The S3 and S2 subsites both discriminated in favor of alanine and against proline. Pr2 rapidly hydrolyzed casein and synthetic substrates containing arginine or lysine. It possessed little or no activity vs cuticle, elastin, or synthetic substrates for chymotrypsin and elastase. Specific active site inhibitors confirmed the similarities between Pr2 and trypsin.  相似文献   

12.
[背景]红火蚁是一种危险性入侵生物,虫生真菌对其防治效果会受到外界环境因子的影响。[方法]应用致病力测定的方法研究了不同剂量金龟子绿僵菌M09对红火蚁的毒力,同时研究了含水量和土壤类型对绿僵菌毒力的影响。[结果]红火蚁的死亡率与金龟子绿僵菌的剂量呈正相关,处理4d后LG50为0.37g。金龟子绿僵菌在砂土、壤土和粘土中对红火蚁的致死率均与对照差异显著,其中在砂土中的毒力最强。此外,在不同含水量的土壤中,金龟子绿僵菌的致死率也不相同(P〈0.01)。[结论与意义]土壤类型和土壤湿度会显著影响金龟子绿僵菌M09对红火蚁的防治效果。选择高湿和砂土类型的土壤施用金龟子绿僵菌M09可以达到较好的效果。  相似文献   

13.
Abstract Trypsin-like enzymes from the entomopathogenic fungus Metarhizium anisopliae have been characterised. Two proteases with tryptic activity were purified by narrow range isoelectric focussing and affinity chromatography. One of these proteases, with an isoelectric point of 5.4 and a molecular mass of 28.8 kDa is a 'classical' trypsin belonging to the serine protease class. The other protease, with an isoelectric point of 4.6 and a molecular mass of 26.7 kDa, demonstrates trypsin-like specificity but, on the basis of inhibition and activation studies, belongs to the cysteine protease family and as such is the first fungal protease to be found of this type. The amino acid composition, kinetic constants and activity against proteinaceous substrates, including locust cuticle have been determined.  相似文献   

14.
采用RT-PCR方法从本实验室分离筛选到的金龟子绿僵小孢变种Metarhizium anisopliae vat.anisopliae中,扩增得到PrlA基因全长,此基因全长为1242bp,经Blastn分析此基因序列与M.anopliae的PrlA基因(M73795)同源率为98%。以pET- 22b( )为基础载体,构建pET-PrlA重组表达载体,在大肠杆菌(Escherichia.coli)BL 21(DE3)中进行表达。经SDS—PAGE分析,获得了约42kDa大小的重组目的蛋白,目的蛋白占表达总蛋白含量的63.2%。将表达的PrlA蛋白切胶回收后制备成抗原,免疫家兔4次后,采血收集抗血清,用ELISA测定效价为1/10000。结果表明,获得的抗体可用于更进一步的研究,将有利于我们进一步了解M.anisopliaeis的侵染机理,弄清楚各Pr蛋白酶的作用方式和对寄主的选择优势,提高生防控制的有效性。  相似文献   

15.
研究了红火蚁工蚁感染绿僵菌后在蛹室的行为变化,以及健康工蚁对侵染蛹的行为保护机制.结果表明: 工蚁被绿僵菌侵染后,在蛹室的活动时间逐渐减少,由第1天的103.4 s降至第3天的38.5 s;而且育幼时间占蛹室活动时间的比例也下降,由第1天的13.6%降至第3天的3.5%.当蛹被绿僵菌侵染后,工蚁对侵染蛹的梳理总时间为对照组的5.3倍,每次梳理的平均持续时间为对照组的5.2倍.梳理行为能显著减少侵染蛹的体表分生孢子数量,在无工蚁、2只工蚁和10只工蚁存在条件下,蛹体表平均孢子数分别为103.1、51.6和31.3个.工蚁的存在能抑制蛹体表孢子的萌发,处理20 h后,无工蚁、2只工蚁和10只工蚁存在条件下,蛹体表孢子萌发率分别为95.1%、80.4%和59.9%.蛹的羽化率随着工蚁数量增加显著升高.红火蚁工蚁通过社会行为防御病原真菌侵染蛹的策略为种群的延续和发展提供了保障.  相似文献   

16.
在室内饲养的水椰八角铁甲Octodonta nipae(Maulik)种群中,发现有大量甲虫被病原菌感染致死.对死虫体表的病原真菌进行分离鉴定,并依据ITS序列分析鉴定,确定该病原真菌为金龟子绿僵菌小孢变种(Metarhizium anisopliae var.anisopliae).经室内致病力测定,接种浓度分别为1...  相似文献   

17.
Serpins是东亚飞蝗Locusta migratoria manilensis体内具有免疫调节功能的一类丝氨酸蛋白酶抑制剂.前期研究发现Serpin1能够降低绿僵菌Metarhizium对蝗虫的杀虫效果,本研究旨在从酶学角度明确Serpin1蛋白抑制绿僵菌毒力的原因,进一步揭示Serpins的功能与作用机制.本实验采用饵剂饲喂的方法进一步明确Serpin1蛋白对绿僵菌侵染东亚飞蝗的抑制效果;测定绿僵菌侵染东亚飞蝗过程中,添加Serpin1蛋白对东亚飞蝗体内保护酶(超氧化物歧化酶SOD、过氧化物酶POD、酚氧化酶PO)、解毒酶(多功能氧化酶MFO、谷胱甘肽转移酶GSTs、乙酰胆碱酯酶AchE)共6种酶的影响,以明确Serpin1对东亚飞蝗酶学免疫的调节作用.结果表明,Serpin1能够显著降低绿僵菌对蝗虫的杀虫效果;将Serpin1与绿僵菌混合后处理东亚飞蝗,12 d后其死亡率为63.5%,显著低于绿僵菌单独处理(死亡率为80.6%).酶活测定结果显示,将绿僵菌IMI330189与Serpin1蛋白混合处理后,与绿僵菌处理组相比,东亚飞蝗体内保护酶SOD和PO的活力总体表现为上调,而POD的活力呈现降低的趋势;解毒酶MFO、GSTs的活性呈现升高趋势,AChE的活力呈现先升高后降低的趋势.上述结果表明,Serpin1蛋白能够增强东亚飞蝗体内解毒酶和保护酶的活性,提高东亚飞蝗的酶学免疫,增强对绿僵菌侵染的抵御能力,从而降低东亚飞蝗的死亡率.本研究为进一步揭示Serpins的功能提供了参考.  相似文献   

18.
In a previous study, a spontaneous subtilisin pr1A and pr1B gene-deficient mutant of the entomopathogenic fungus Metarhizium anisopliae strain V275 has been identified [Wang, C.-S. et al. (2002) FEMS Microbiol. Lett. 213, 251-255]. The insecticidal metabolites of this mutant were studied further. High-performance liquid chromatography (HPLC) analysis indicated that the mutant isolate lost the ability to produce cyclic peptide toxins, destruxins, both in vitro and in vivo. Pulsed-field gel electrophoresis revealed that the mutant concurrently lost a 1.05 Mb (approximately) chromosome, demonstrating for the first time that a conditionally dispensable (CD) chromosome exists in the insect pathogenic fungus, M. anisopliae. Concurrence of losing the ability to produce destruxins and a CD chromosome in the mutant suggests that the toxin synthetase genes of M. anisopliae are located on this CD chromosome, as similarly described for plant pathogenic fungi. Semi-quantitative api ZYM analysis showed more biochemical disparities between the mutant and the wild-type strain.  相似文献   

19.
The functional role of an endosymbiotic conidial fungus (Scopulariopsis brevicaulis) prevalent within the integumental glands and hemocoel of the American dog tick (Dermacentor variabilis) was investigated to explore the nature of this tick/fungus association. D. variabilis is normally highly resistant to Metarhizium anisopliae, a widely-distributed entomopathogenic fungus, but when mature female ticks harboring S. brevicaulis were fed a solution containing a mycotoxin (Amphotericin B) to purge this mycobiont internally, the ticks inoculated with M. anisopliae displayed classic signs of pathogenicity, as evidenced by recovery of M. anisopliae from ticks by internal fungus culture, greatly accelerated net transpiration water loss rates (nearly 3x faster than ticks containing S. brevicaulis naturally) and elevation of critical equilibrium humidity (CEH) closer to saturation, implying a reduced capacity to absorb water vapor and disruption of water balance (water gain not equal water loss) that resulted in tick death. The presence of S. brevicaulis within the tick was previously puzzling: the fungus is transmitted maternally and there is no apparent harm inflicted to either generation. This study suggests that S. brevicaulis provides protection to D. variabilis ticks against M. anisopliae. Thus, the S. brevicaulis/tick association appears to be mutualistic symbiosis. Given that both organisms are of medical-veterinary importance, disruption of this symbiosis has potential for generating novel tools for disease control.  相似文献   

20.
A novel chitinase was detected in extracellular culture fluids of the entomopathogenic fungus Metarhizium anisopliae (ATCC 20500) grown in liquid medium containing chitin as a sole carbon source. A chitinase was purified to near homogeneity from culture broth of M. anisopliae by DEAE-Sephacel, CM-Sepharose CL-6B ion-exchange chromatography, and gel filtration with Superose 12HR. The molecular mass of the enzyme determined by SDS-polyacrylamide gel electrophoresis was approximately 60 kDa and the optimum pH of the enzyme was 5.0. This molecular mass is different from values of 33, 43.5, and 45 kDa for endochitinases and 110 kDa for an exochitinase (N-acetylglucosaminidase) from M. anisopliae ME-1 published previously. In addition, N-terminal sequences of 60-kDa chitinase are different from those of 43.4- and 45-kDa endochitinases. The purified enzyme showed high chitinolytic activity against colloidal, crystalline chitin of crab shells as well as against p-nitrophenyl-beta-d-N-acetylglucosamide, p-nitrophenyl-beta-d-N, N'-diacetylchitobiose, and p-nitrophenyl-N, N'-N"-triacetylchitotriose, indicating that this enzyme has both endo- and exochitinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号