首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of anthracene by selected white rot fungi   总被引:5,自引:0,他引:5  
Abstract Approximately 60% of the originally supplied anthracene (AC) was degraded in ligninolytic stationary cultures of selected white rot fungi within 21 days. All the white rot fungi tested oxidized AC to anthraquinone (AQ). Unlike Phanerochaete chrysosporium and strain Px, with Pleurotus ostreatus, Coriolopsis polyzona and Trametes versicolor , AQ did not accumulate in the cultures, indicating that AQ was degraded further and its degradation did not appear to be a rate-limiting step. However, P. ostreatus and C. polyzona failed to degrade AQ in the absence of AC. P. ostreatus, T. versicolor and strain Px did not produce lignin peroxidase (ligninase) (LIP) under the test conditions but oxidized AC to AQ suggesting that white rot fungi produce enzyme(s) other than LIP capable of oxidizing compounds with high ionization potential like AC. Moreover, in the case of Ph. chrysosporium and C. polyzona , AC degradation started earlier than the production of LIP. Veratryl alcohol (VA) seemed to be playing a role in AC oxidation catalyzed by LIP in Ph. chrysosporium .  相似文献   

2.
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.  相似文献   

3.
Mushroom production on coffee pulp as substrate generates an intense black residual liquid, which requires suitable treatment. In the present study, Pleurotus ostreatus growth in wastewater from mushroom farm was evaluated as a potential biological treatment process for decolourisation as well as to obtain biomass (liquid inoculum). Culture medium components affecting mycelial growth were determined, evaluating colour removal. Laccase activity was monitored during the process. P. ostreatus was able to grow in non diluted WCP. Highest biomass yield was obtained when glucose (10 g/l) was added. The addition of this carbon source was necessary for efficient decolourisation. Agitation of the culture improved biodegradation of WCP as well as fungal biomass production. Laccase and manganese-independent peroxidase activities were detected during fungal treatment of the WCP by P. ostreatus CCEBI 3024. The laccase enzyme showed good correlation with colour loss. Both wastewater colour and pollution load (as chemical oxygen demand) decreased more than 50% after 10 days of culture. Phenols were reduced by 92%.  相似文献   

4.
Selected strains of three species of white rot fungi, Pleurotus ostreatus, Phanerochaete chrysosporium and Trametes versicolor, were grown in sterilized soil from straw inocula. The respective colonization rates and mycelium density values decreased in the above mentioned order. Three- and four-ringed PAHs at 50 ppm inhibited growth of fungi in soil to some extent. The activities of fungal MnP and laccase (units per g dry weight of straw or soil), extracted with 50 mM succinate-lactate buffer (pH 4.5), were 5 to 20-fold higher in straw compared to soil. The enzyme activities per g dry soil in P. ostreatus and T. versicolor were similar, in contrast to P. chrysosporium, where they were extremely low. Compared to the aerated controls, P. ostreatus strains reduced the levels of anthracene, pyrene and phenanthrene by 81–87%, 84–93% and 41–64% within 2 months, respectively. During degradation of anthracene, all P. ostreatus strains accumulated anthraquinone. PAH removal rates in P. chrysosporium and T. versicolor soil cultures were much lower.  相似文献   

5.
The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO4). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42–68% for five cycles).  相似文献   

6.
AIM: Decolourization of black olive mill wastewaters (OMW) by depolymerization of phenolic compounds by Geotrichum candidum. METHODS AND RESULTS: Our results show that G. candidum is able to grow on black OMW supplemented with carbon source and nitrogen. The Geotrichum growth decreased the pH and induced a 49% of colour removal when the black OMW was supplemented with glycerol and diammonium tartrate (20 mm ammonium). An improvement of 10% of colour removal was observed when the culture was supplemented with veratryl alcohol. The decolourization was inhibited with glutamate as nitrogen source. CONCLUSION: Our results suggest the potential use of G. candidum in black OMW decolourization and support the concept that lignin peroxidase (LiP) of G. candidum is involved in the depolymerization of phenolic compounds. Significance and Impact of the Study: This is the first report of LiP production by G. candidum on OMW.  相似文献   

7.
Summary By contaminating a Tunisian soil with black oxidized and sterilized olive-mill wastewaters (OMW), 30 new indigenous fungal soil strains able to overcome the OMW toxicity could be directly selected. Ten of the fungal strains previously isolated were screened for their capability to grow in a liquid culture medium containing oxidized OMW as the only source of carbon and energy. According to these preliminary tests, strain F2 showed the best capability of removing black colour and COD (chemical oxygen demand) and was further identified as Aspergillus flavus. After optimization of batch-liquid culture conditions in the presence of oxidized OMW, the time course of biomass and enzyme production by A. flavus F2 was followed in relation to colour and COD removal. A. flavus F2 could efficiently decolourize and detoxify the black oxidized OMW (58 and 46% of colour and COD removal, respectively, after 6 days of cultivation), concomitantly with the production of tannase (8000 UI/l on day 3).  相似文献   

8.
AIMS: Xanthan production by Xanthomonas campestris from several olive mill wastewaters (OMW) was investigated. METHODS AND RESULTS: Maximum xanthan production of 4 g l(-1) was obtained in media with 50% OMW as sole source of nutrients. OMW storage decreased effluent quality for xanthan production. The range of effluent concentration for X. campestris growth and xanthan production varied depending on OMW extraction METHOD: Wastewaters from press and two-phase extraction methods required higher dilution rates (< 10%) than those from the three-phase extraction method (50%). Nitrogen supplementation improved xanthan production in press and two-phase OMW. CONCLUSION: Factors affecting wastewaters composition, namely, waste storage, time of olive harvesting, and method for oil extraction, were found to influence xanthan production in shake-flask cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: Conditions for xanthan production from OMW should be optimized in accordance with the nature of the waste material.  相似文献   

9.
AIMS: To test the potential use of Phanerochaete chrysosporium and other white-rot fungi to detoxify olive mill wastewaters (OMW) in the presence of a complex activated sludge. To combine the aerobic with anaerobic treatment to optimize the conversion of OMW in biogas. METHODS AND RESULTS: A 25-l air lift reactor was used to pretreat OMW by white-rot fungi. Detoxification of the OMW was monitored by size exclusion HPLC analysis, chemical oxygen demand (COD)/biological oxygen demand (BOD(5)) ratio evolution, and bioluminescence toxicity test. Anaerobic treatment of OMW was performed in a 12-l anaerobic filter reactor. Efficiency of the treatment was evaluated by organic matter removal, and biogas production. By comparison with the pretreatment by activated sludge only, the bioaugmentation with Phanerochaete chrysosporium or Trametes versicolor led to high removal of organic matter, decreased the COD/BOD(5) ratio and the toxicity. The subsequent anaerobic digestion of the OMW pretreated with activated sludge-white-rot fungi showed higher biomethanization yields than that pretreated with activated sludge only. Higher loading rates (7 g COD l(-1) day(-1)) were reached without any acidification or inhibition of biomethanization. CONCLUSIONS: The use of white-rot fungi, even in the presence of complex biological consortia to detoxify OMW, proved to be possible and made the anaerobic digestion of OMW for methane production feasible. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of fungi for OMW reuse and energy production could be adapted to industrial applications.  相似文献   

10.
The performance and enzymatic strategy exhibited by basidiomycete Euc-1, a laccase producing strain, was investigated during the biodegradation of olive mill wastewater (OMW). This strain yielded better decolorization of solidified OMW than Phanerochaete chrysosporium and removed 90% of phenols (initial concentration=800 mg l(-1)), 73% of color (initial A465=4.4), and 45% of chemical oxygen demand in batch cultures containing OMW. Since partial phenol removal occurred before the detection of enzymatic activity, no plausible correlation could be established between them. In contrast, decolorization occurred only after the detection of laccase activity and coincided with its production over time. Two laccase fractions (Lac1 and Lac2) were separated by chromatography. OMW strongly induced Lac2 that was almost absent in defined liquid medium. Furthermore, Lac2 was the main laccase fraction in the presence of OMW. This study pointed out that basidiomycete Euc-1 and its ligninolytic system could be a useful tool for the bioremediation of wastewater generated in the process of olive oil extraction.  相似文献   

11.
在MDA或PNA培养基上,用单孢分离物在试管中进行配对,观测菌丝体上的锁状联合和子实体的形成情况,判定单孢菌株间的亲和性;研究了2个刺芹侧耳菌株PE-11、PE-12和1个糙皮侧耳菌株PO-02的交配系统,以及3个菌株间的亲缘关系;结果表明刺芹侧耳和糙皮侧耳是双因子交配系统。这是一个测定侧耳属的交配系统的新方法。  相似文献   

12.
The ability of several Pleurotus spp. strains to remove phenolic compounds from an olive oil mill wastewater (OMW) was studied. All strains tested in this work were able to grow in OMW without any addition of nutrients and any pre-treatment, except sterilization. High laccase activity was measured in the growth medium, while 69-76% of the initial phenolic compounds were removed. The black color of OMW became yellow-brown and brighter as the strains grew. The lowest phenolic concentrations were reached after 12/15 days. A decrease of the phytotoxicity, as described by the parameter Germination Index, was noticed in the OMW treated with some Pleurotus spp strains, although this decrease was not proportional to the phenolic removal. A new parameter, namely Phenol-toxicity Index, was considered in the present paper. Using this parameter it was found that the remaining phenolics and/or some of the oxidation products of the laccase reaction in the treated OMW were more toxic than the original phenolic compounds.  相似文献   

13.
The explosives TNT, HMX, and RDX are integral components of many munitions. The wastes from the manufacture and the use of these and other explosives has resulted in substantial contamination of water and soil. White rot fungi have been proposed for use in the bioremediation of contaminated soil and water. Strains of Phanerochaete chrysosporium and Pleurotus ostreatus adapted to grow on high concentrations of TNT were studied with regard to their ability to degrade TNT in liquid cultures. Both strains were able to cause extensive degradation of TNT. Field bioremediation studies using P. ostreatus were performed on site at the Yorktown Naval Weapons Station Yorktown (Yorktown, VA). In two plots, 6 cubic yards of soil contaminated with TNT, HMX, and RDX were blended with 3 cubic yards of a substrate mixture containing nutrients that promote the growth of fungi. In soil amended with growth substrate and P. ostreatus, concentrations of TNT, HMX and RDX were reduced from 194.0±50, 61±20 mg/kg and 118.0±30 to 3±4, 18±7 and 5±3?mg/kg, respectively, during a 62-day incubation period. Interestingly, in soil that was amended with this substrate mixture, but not with P. ostreatus, the concentrations of TNT, HMX, and RDX were also reduced substantially from 283±100, 67±20, and 144±50?mg/kg to 10±10, 34±20, and 12±10?mg/kg, respectively, during the same period. Thus, it appears that addition of amendments that enhance the growth and activity of indigenous microorganisms was sufficient to promote extensive degradation of these compounds in soil.  相似文献   

14.
Biodegradation of endocrine-disrupting phthalates [diethyl phthalate (DEP), dimethyl phthalate (DMP), butylbenzyl phthalate (BBP)] was investigated with 10 white rot fungi isolated in Korea. When the fungal mycelia were added together with 100 mg/l of phthalate into yeast extract-malt extract-glucose (YMG) medium, Pleurotus ostreatus, Irpex lacteus, Polyporus brumalis, Merulius tremellosus, Trametes versicolor, and T. versicolor MrP1 and MrP13 (transformant of the Mn-repressed peroxidase gene of T. versicolor) could remove almost all of the 3 kinds of phthalates within 12 days of incubation. When the phthalates were added to 5-day pregrown fungal cultures, most fungi except I. lacteus showed the increased removal of the phthalates compared with those of the nonpregrown cultures. In both culture conditions, P. ostreatus showed the highest degradation rates for the 3 phthalates tested. BBP was degraded with the highest rates among the 3 phthalates by all fungal strains. Only 14.9% of 100 mg/l BBP was degraded by the supernatant of P. ostreatus culture in YMG medium in 4 days of incubation, but the washed or homogenized mycelium of P. ostreatus could remove 100% of BBP within 2 days even in distilled water, indicating that the initial BBP biodegradation by P. ostreatus may be attributed to mycelium-associated enzymes rather than extracellular enzymes. The biodegradation rate of BBP by the immobilized cells of P. ostreatus was almost the same as that in the suspended culture. The estrogenic activity of 100 mg/l DMP decreased during biodegradation by P. ostreatus.  相似文献   

15.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

16.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

17.
Cellobiose dehydrogenase purified from two different fungal sources was assessed for its ability to remove and/or reduce colour from pulp mill bleach plant effluent. Cellobiose dehydrogenase purified from Phanerochaete chrysosporium was shown to prefer acidic conditions and was consequently used to treat the acid effluent stream discharged from a pulp mill bleach plant, while an analogous enzyme originating from Humicola insolens preferred alkaline conditions, and was applied to the effluent discharged from the caustic sewer of the bleach plant. Both enzyme preparations were able to remove colour from their respective effluent sources to a comparable extent. Up to 50% of the effluent colour was removed within 4 days when treated under optimised conditions. Furthermore, it was also shown that this enzymatic approach was effective at removing colour generated by both softwood and hardwood resources. Mechanistically, it was shown that colour was removed from all molecular weight fractions, and the higher molecular weight material (>300 kDa) was concurrently preferentially degraded. Cellobiose dehydrogenase treatment of effluent did not target phenolic, stilbene, or alpha-carbonyl structures, but did affect the quinone content. Further investigations using model compounds confirmed these results, and subsequently showed that only the para-quinones with low substitution were reduced with cellobiose dehydrogenase.  相似文献   

18.
Ligninolytic enzymes activities (laccases, peroxidases (total, MnP and MiP) and aryl-alcohol oxidase (AAO)) were measured during the cultivation of six commercial Pleurotus sp. strains on MMP media, on cereal grains (spawn) and on straw substrates (the three commonly utilized cultivation steps to obtain fruiting bodies) supplemented with several concentrations of autoclaved (OMW) or gamma-irradiated (iOMW) olive mill waste. Results indicated that all the strains were able to grow on MMP media and spawn containing up to 30% OMW and iOMW and on straw substrates mixed with 50% OMW. None of the strains showed AAO activity and there was not a single strain which showed the highest laccases and peroxidases activities, independently of the utilized substrate. Pleurotus mycelia adjusted their enzymatic mechanisms depending on their variety, type of substrate, concentration of OMW or iOMW added. OMW was a better supplement to use than iOMW because OMW induced higher exo-enzymes activities.  相似文献   

19.
The effect of the cheese whey's (CW) addition on the fermentative decolorization of olive mill wastewater (OMW) by Lactobacillus paracasei, with and without pH adjustment by lime, was investigated. Mixtures OMW/CW at different proportions were fermented. The highest colour removal (47%) and total phenolic reduction (22.7%) of OMW were obtained after cofermentation of OMW/CW at proportions of 10/90, respectively. The decrease of pH after cofermentation of the two wastewaters, induced the precipitation of whey proteins with phenolic compounds and, so, improves decolorization. These removal yields reached 64% and 34%, respectively after precipitation by adjustment of pH at 7 with lime at the end of cofermentation. These improvements were correlated to a clarification of wastewaters by precipitation of whey proteins with phenolic compounds. An enhanced decolorization (up to 93%) and a total phenolic reduction (50%) of the mixture were obtained when cofermentation sequentially pH corrected by lime addition was investigated.  相似文献   

20.
The white rot fungus Phanerochaete chrysosporium is unique in its ability to totally degrade a wide variety of recalcitrant pollutants. We have investigated the degradation of biphenyl and two model chlorinated biphenyls, 2,2',4,4'-tetrachlorobiphenyl and 2-chlorobiphenyl by suspended cultures of P. chrysosporium grown under conditions that maximize the synthesis of lignin-oxidizing enzymes. Radiolabeled biphenyl and 2'-chlorobiphenyl added to cultures at concentrations in the range 260 nM to 8.8 muM were degraded extensively to CO(2) within 30 days. In addition, from 40% to 60% of the recovered radioactivity was found in water-soluble compounds. A correlation between the rate of degradation and the synthesis of ligninases or Mn-dependent peroxidases could not be observed, indicating that yet unknown enzymatic system may be resonsible for the initial oxidation of PCBs. The more heavily chlorinated PCB congener, 2,2',4,4'-tetrachlorobiphenyl was converted to CO(2) less readily; approximately 9% and 0.9% mineralization was observed in cultures incubated with 40 nM and 5.3 muM, respectively. Overall, our results indicate that P. chrysosporium is a promising organism for the treatment of wastes contaminatd with lightly and moderately chlorinated PCBs. (c) 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号