首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Broin M  Cuiné S  Eymery F  Rey P 《The Plant cell》2002,14(6):1417-1432
The chloroplastic drought-induced stress protein of 32 kD (CDSP32) is composed of two thioredoxin modules and is induced by environmental and oxidative stress conditions. We investigated whether the plastidic protein BAS1, which is related to eubacterial 2-Cys peroxiredoxin, is a target for CDSP32. Using a CDSP32 active-site mutant, we showed that the BAS1 and CDSP32 proteins form a mixed disulfide complex in vitro. Moreover, affinity chromatography indicated that BAS1 is a major target for CDSP32 in chloroplasts. CDSP32 was able to reduce BAS1 in vitro, and BAS1 displayed CDSP32-dependent peroxidase activity. The function of CDSP32 was investigated in transgenic potato lines without detectable levels of the protein as a result of cosuppression. Under conditions of photooxidative stress induced by incubation with either methyl viologen or t-butyl hydroperoxide or by exposure to low temperature under high light, plants lacking CDSP32 exhibited decreased maximal photosystem II photochemical efficiencies compared with the wild type and transgenic controls. In addition, plants without CDSP32 retained much less chlorophyll than controls under stress, indicating increased damage to photosynthetic membranes. We conclude that CDSP32 is a thioredoxin with a critical role in plastid defense against oxidative damage and that this role is related to its function as a physiological electron donor to the BAS1 peroxiredoxin.  相似文献   

2.
Broin M  Rey P 《Plant physiology》2003,132(3):1335-1343
The CDSP32 protein (chloroplastic drought-induced stress protein of 32 kD) is a thioredoxin participating in the defense against oxidative damage. We recently have identified in vitro the BAS1 2-Cys peroxiredoxin, a peroxide-detoxifying enzyme, as a target for CDSP32. Here, we report the characterization under stress conditions of transgenic potato (Solanum tuberosum) plants lacking CDSP32 with regard to the BAS1 redox state and the level of lipid peroxidation. Under control conditions, BAS1 is present at similar levels both in wild-type (WT) and transgenic plants. Under drought and methyl viologen treatment, CDSP32-lacking plants display, compared with WT, an increased proportion of BAS1 monomer corresponding to an overoxidized form of the protein. Leaf discs from transgenic plants treated with methyl viologen exhibit earlier degradation of BAS1 than WT plants do. Using several approaches, i.e. a probe emitting fluorescence when reacting with peroxides, high-performance liquid chromatography determination of lipid hydroxy fatty acid content, and measurement of chlorophyll thermoluminescence, we show a higher lipid peroxidation level under methyl viologen treatment in thylakoids from CDSP32-lacking plants compared with WT. These data show that CDSP32 is a critical component in the defense system against lipid peroxidation in photosynthetic membranes, likely as a physiological electron donor to the BAS1 peroxiredoxin.  相似文献   

3.
One of the mechanisms plants have developed for chloroplast protection against oxidative damage involves a 2-Cys peroxiredoxin, which has been proposed to be reduced by ferredoxin and plastid thioredoxins, Trx x and CDSP32, the FTR/Trx pathway. We show that rice (Oryza sativa) chloroplast NADPH THIOREDOXIN REDUCTASE (NTRC), with a thioredoxin domain, uses NADPH to reduce the chloroplast 2-Cys peroxiredoxin BAS1, which then reduces hydrogen peroxide. The presence of both NTR and Trx-like domains in a single polypeptide is absolutely required for the high catalytic efficiency of NTRC. An Arabidopsis thaliana knockout mutant for NTRC shows irregular mesophyll cell shape, abnormal chloroplast structure, and unbalanced BAS1 redox state, resulting in impaired photosynthesis rate under low light. Constitutive expression of wild-type NTRC in mutant transgenic lines rescued this phenotype. Moreover, prolonged darkness followed by light/dark incubation produced an increase in hydrogen peroxide and lipid peroxidation in leaves and accelerated senescence of NTRC-deficient plants. We propose that NTRC constitutes an alternative system for chloroplast protection against oxidative damage, using NADPH as the source of reducing power. Since no light-driven reduced ferredoxin is produced at night, the NTRC-BAS1 pathway may be a key detoxification system during darkness, with NADPH produced by the oxidative pentose phosphate pathway as the source of reducing power.  相似文献   

4.
The proteomics analysis reported here shows that a major cellular response to oxidative stress is the modification of several peroxiredoxins. An acidic form of the peroxiredoxins appeared to be systematically increased under oxidative stress conditions. Peroxiredoxins are enzymes catalyzing the destruction of peroxides. In doing so, a reactive cysteine in the peroxiredoxin active site is weakly oxidized (disulfide or sulfenic acid) by the destroyed peroxides. Cellular thiols (e.g. thioredoxin) are used to regenerate the peroxiredoxins to their active state. Tandem mass spectrometry was carried out to characterize the modified form of the protein produced in vivo by oxidative stress. The cysteine present in the active site was shown to be oxidized into cysteic acid, leading to an inactivated form of peroxiredoxin. This strongly suggested that peroxiredoxins behave as a dam upon oxidative stress, being both important peroxide-destroying enzymes and peroxide targets. Results obtained in a primary culture of Leydig cells challenged with tumor necrosis factor alpha suggested that this oxidized/native balance of peroxiredoxin 2 may play an active role in resistance or susceptibility to tumor necrosis factor alpha-induced apoptosis.  相似文献   

5.
Broin M  Cuiné S  Peltier G  Rey P 《FEBS letters》2000,467(2-3):245-248
In animal cells, yeast and bacteria, thioredoxins are known to participate in the response to oxidative stress. We recently identified a novel type of plant thioredoxin named CDSP 32 for chloroplastic drought-induced stress protein of 32 kDa. In the present work, we measured comparable increases in the glutathione oxidation ratio and in the level of chlorophyll thermoluminescence, a specific marker for thylakoid lipid peroxidation in Solanum tuberosum plants subjected to drought or oxidative treatments (photooxidative stress, gamma irradiation and methyl viologen spraying). Further, substantial accumulations of CDSP 32 mRNA and protein were revealed upon oxidative treatments. These data show for the first time in plants the induction of a thioredoxin by oxidative stress. We conclude that CDSP 32 may preserve chloroplastic structures against oxidative injury upon drought.  相似文献   

6.
7.
Methamphetamine (METH) is an abusive psychostimulant that induces neuronal cell death/degeneration in experimental animals and humans. METH-induced apoptosis in rat pheochromocytoma cells was utilized to study the neurotoxic mechanism. During METH intoxication, we found that peroxiredoxins and thioredoxins/thioredoxin reductases (peroxiredoxin reducing systems) which are known to prevent oxidative stress and apoptosis were differentially downregulated and upregulated, respectively. We also found not only the free radicals but also the oxidative forms of peroxiredoxin and thioredoxin were increased, indicating the dysfunction of these enzymes. Thus, METH-induced differential regulation and oxidation of peroxiredoxins and thioredoxin may be an important mechanism for apoptosis.  相似文献   

8.
In Kinetoplastida 2-Cys peroxiredoxins are the ultimate members of unique enzymatic cascades for detoxification of peroxides, which are dependent on trypanothione, a small thiol specific to these organisms. Here we report on two distinct Leishmania infantum peroxiredoxins, LicTXNPx and LimTXNPx, that may be involved in such a pathway. LicTXNPx, found in the cytoplasm, is a typical 2-Cys peroxiredoxin encoded by LicTXNPx, a member of a multicopy gene family. LimTXNPx, encoded by a single copy gene, LimTXNPx, is confined to the mitochondrion and is unusual in possessing an Ile-Pro-Cys motif in the distal redox center, replacing the common peroxiredoxin Val-Cys-Pro sequence, apart from an N-terminal mitochondrial leader sequence. Based on sequence and subcellular localization, the peroxiredoxins of Kinetoplastida can be separated in two distinct subfamilies. As an approach to investigate the function of both peroxiredoxins in the cell, L. infantum promastigotes overexpressing LicTXNPx and LimTXNPx were assayed for their resistance to H(2)O(2) and tert-butyl hydroperoxide. The results show evidence that both enzymes are active as peroxidases in vivo and that they have complementary roles in parasite protection against oxidative stress.  相似文献   

9.
Two peroxiredoxins, classified as Type II and PrxQ, were characterized in the purple non-sulfur photosynthetic bacterium Rhodobacter sphaeroides. Both recombinant proteins showed remarkable thioredoxin-dependent peroxidase activity with broad substrate specificity in vitro. Nevertheless, PrxQ of R. sphaeroides, unlike typical PrxQs studied to date, does not contain one of the two conserved catalytic Cys residues. We found that R. sphaeroides PrxQ and other PrxQ-like proteins from several organisms conserve a different second Cys residue, indicating that these proteins should be categorized into a novel PrxQ subfamily. Disruption of either the Type II or PrxQ gene in R. sphaeroides had a dramatic effect on cell viability when the cells were grown under aerobic light or oxidative stress conditions created by exogenous addition of reactive oxygen species to the medium. Growth rates of the mutants were significantly decreased compared with that of wild type under aerobic but not anaerobic conditions. These results indicate that the peroxiredoxins are crucial for antioxidative stress response in this bacterium. The gene disruptants also demonstrated reduced levels of photopigment synthesis, suggesting that the peroxiredoxins are directly or indirectly involved in regulated synthesis of the photosynthetic apparatus.  相似文献   

10.
The sequencing of the genome of Arabidopsis thaliana revealed that this plant contained numerous isoforms of thioredoxin (Trx), a protein involved in thiol-disulfide exchanges. On the basis of sequence comparison, seven putative chloroplastic Trxs have been identified, four belonging to the m-type, two belonging to the f-type, and one belonging to a new x-type. In the present work, these isoforms were produced and purified as recombinant proteins without their putative transit peptides. Their activities were tested with two known chloroplast thioredoxin targets: NADP-malate dehydrogenase and fructose-1,6-bisphosphatase and also with a chloroplastic 2-Cys peroxiredoxin. The study confirms the strict specificity of fructose-bisphosphatase for Trx f, reveals that some Trxs are unable to activate NADP-malate dehydrogenase, and shows that the new x-type is the most efficient substrate for peroxiredoxin while being inactive toward the two other targets. This suggests that this isoform might be specifically involved in resistance against oxidative stress. Three-dimensional modeling shows that one of the m-type Trxs, Trx m3, which has no activity with any of the three targets, exhibits a negatively charged surface surrounding the active site. A green fluorescent protein approach confirms the plastidial localization of these Trxs.  相似文献   

11.
Peroxiredoxin 5 is a mammalian thioredoxin peroxidase ubiquitously expressed in tissues. Peroxiredoxin 5 can be intracellularly localized to mitochondria, peroxisomes, the cytosol, and, to a lesser extent, the nucleus. This remarkably wide subcellular distribution compared with the five other mammalian peroxiredoxins prompted us to further investigate the antioxidant protective function of peroxiredoxin 5 in mammalian cells according to its subcellular localization. Chinese hamster ovary cells overexpressing human peroxiredoxin 5 in the cytosol, in mitochondria, or in the nucleus were established by stable transfection. Cells overexpressing peroxiredoxin 5 were exposed for 1 h to low or acute oxidative stress with exogenously added hydrogen peroxide or tert-butylhydroperoxide. Cell protection conferred by peroxiredoxin 5 was evaluated by clonogenicity and lactate dehydrogenase assays. Overexpressing peroxiredoxin 5 in either the cytosolic, mitochondrial, or nuclear compartment significantly reduced cell death, with more effective protection with overexpression of peroxiredoxin 5 in mitochondria, confirming that this organelle is a major target of peroxides. Moreover, we evaluated, with the comet assay, nuclear DNA damage induced by hydrogen peroxide or tert-butylhydroperoxide. Overexpression of peroxiredoxin 5 in the nucleus significantly decreased DNA damage induced by both peroxides. In conclusion, the present study suggests that multiple subcellular targeting of peroxiredoxin 5 in mammalian cells can be implicated in antioxidant protective mechanisms under nonpathological conditions but also during acute oxidative stress caused by peroxides occurring in pathophysiological situations.  相似文献   

12.
Disruption of the two thioredoxin genes in yeast dramatically affects cell viability and growth. Expression of Arabidopsis thioredoxin AtTRX3 in the Saccharomyces thioredoxin Delta strain EMY63 restores a wild-type cell cycle, the ability to grow on methionine sulfoxide, and H2O2 tolerance. In order to isolate thioredoxin targets related to these phenotypes, we prepared a C35S (Escherichia coli numbering) thioredoxin mutant to stabilize the intermediate disulfide bridged complex and we added a polyhistidine N-terminal extension in order to purify the complex rapidly. Expression of this mutant thioredoxin in the wild-type yeast induces a reduced tolerance to H2O2, but only limited change in the cell cycle and no change in methionine sulfoxide utilization. Expression in the Delta thioredoxin strain EMY63 allowed us to isolate a complex of the thioredoxin with YLR109, an abundant yeast protein related to PMP20, a peroxisomal protein of Candida. No function has so far been attributed to this protein or to the other numerous homologues described in plants, animals, fungi, and prokaryotes. On the basis of the complementation and of low similarity with peroxiredoxins, we produced YLR109 and one of its Arabidopsis homologues in E. coli to test their peroxiredoxins activity. We demonstrate that both recombinant proteins present a thioredoxin-dependent peroxidase activity in vitro. The possible functions of this new peroxiredoxin family are discussed.  相似文献   

13.
Trypanosoma cruzi tryparedoxin 1 (TcTXN1) is an oxidoreductase belonging to the thioredoxin superfamily, which mediates electron transfer between trypanothione and peroxiredoxins. In trypanosomes TXNs, and not thioredoxins, constitute the oxido-reductases of peroxiredoxins. Since, to date, there is no information concerning TcTXN1 substrates in T. cruzi, the aim of this work was to characterize TcTXN1 in two aspects: expression throughout T. cruzi life cycle and subcellular localization; and the study of TcTXN1 interacting-proteins. We demonstrate that TcTXN1 is a cytosolic and constitutively expressed protein in T. cruzi. In order to start to unravel the redox interactome of T. cruzi we designed an active site mutant protein lacking the resolving cysteine, and validated the complex formation in vitro between the mutated TcTXN1 and a known partner, the cytosolic peroxiredoxin. Through the expression of this mutant protein in parasites with an additional 6xHis-tag, heterodisulfide complexes were isolated by affinity chromatography and identified by 2-DE/MS. This allowed us to identify fifteen TcTXN1 proteins which are involved in two main processes: oxidative metabolism and protein synthesis and degradation. Our approach led us to the discovery of several putatively TcTXN1-interacting proteins thereby contributing to our understanding of the redox interactome of T. cruzi.  相似文献   

14.
Peroxiredoxins are a family of abundant peroxidases found in all organisms. Although these antioxidant enzymes are thought to be critically involved in cellular defense and redox signaling, their exact physiological roles are largely unknown. In this study, we took a genetic approach to address the functions of peroxiredoxins in budding yeast. We generated and characterized a yeast mutant lacking all five peroxiredoxins. The quintuple peroxiredoxin-null mutant was still viable, though the growth rate was lower under normal aerobic conditions. Although peroxiredoxins are not essential for cell viability, peroxiredoxin-null yeast cells were more susceptible to oxidative and nitrosative stress. In the complete absence of peroxiredoxins, the expression of other antioxidant proteins including glutathione peroxidase and glutathione reductase was induced. In addition, the quintuple mutant was hypersensitive to glutathione depletion. Thus, the glutathione system might cooperate with other antioxidant enzymes to compensate for peroxiredoxin deficiency. Interestingly, the peroxiredoxinnull yeast cells displayed an increased rate of spontaneous mutations that conferred resistance to canavanine. This mutator phenotype was rescued by yeast peroxiredoxin Tsa1p, but not by its active-site mutant defective for peroxidase activity. Our findings suggest that the antioxidant function of peroxiredoxins is important for maintaining genome stability in eukaryotic cells.  相似文献   

15.
Glutaredoxins (Grxs) are small ubiquitous glutathione-disulfide oxidoreductase that reduce disulfide bonds of target proteins and maintain the redox homoeostasis of cells. Disruption of ssr2061 reduced the viability of cells indicated Grx2061 has a protective role against oxidative stress in Synechocystis sp. PCC 6803. To understand the function of Grx2061 in cyanobacteria and its difference from plant, Grx targets were retained specifically on an affinity media coupled with a mutated monocysteinic Grx and identified by mass spectra. Among 42 identified targets, 26 of them are novel ones compared with those known in higher plants. These proteins are supposed to be involved in 12 cellular processes including oxidative stress response, Calvin cycle, protein synthesis, and etc. Biochemical tests highlighted four of them which showed a Grx-dependent activation of peroxiredoxin and deactivation of catalase. Oxidized Grx2061 could keep redox equilibrium with another probable Grx and be reduced by thioredoxin reductase, indicating that Grx2061 can accept electrons from either glutathione or thioredoxin reductase. Our studies suggest Grx2061 in cyanobacteria plays an important role in redox network and its targets are as extensive as that in other organisms.  相似文献   

16.
The yeast Tsa1 peroxiredoxin, like other 2-Cys peroxiredoxins, has dual activities as a peroxidase and as a molecular chaperone. Its peroxidase function predominates in lower-molecular-mass forms, whereas a super-chaperone form predominates in high-molecular-mass complexes. Loss of TSA1 results in aggregation of ribosomal proteins, indicating that Tsa1 functions to maintain the integrity of the translation apparatus. In the present study we report that Tsa1 functions as an antioxidant on actively translating ribosomes. Its peroxidase activity is required for ribosomal function, since mutation of the peroxidatic cysteine residue, which inactivates peroxidase but not chaperone activity, results in sensitivity to translation inhibitors. The peroxidatic cysteine residue is also required for a shift from ribosomes to its high-molecular-mass form in response to peroxide stress. Thus Tsa1 appears to function predominantly as an antioxidant in protecting both the cytosol and actively translating ribosomes against endogenous ROS (reactive oxygen species), but shifts towards its chaperone function in response to oxidative stress conditions. Analysis of the distribution of Tsa1 in thioredoxin system mutants revealed that the ribosome-associated form of Tsa1 is increased in mutants lacking thioredoxin reductase (trr1) and thioredoxins (trx1 trx2) in parallel with the general increase in total Tsa1 levels which is observed in these mutants. In the present study we show that deregulation of Tsa1 in the trr1 mutant specifically promotes translation defects including hypersensitivity to translation inhibitors, increased translational error-rates and ribosomal protein aggregation. These results have important implications for the role of peroxiredoxins in stress and growth control, since peroxiredoxins are likely to be deregulated in a similar manner during many different disease states.  相似文献   

17.
18.
H(2)O(2) is a reactive oxygen species that has drawn much interest because of its role as a second messenger in receptor-mediated signaling. Mammalian 2-Cys peroxiredoxins have been shown to eliminate efficiently the H(2)O(2) generated in response to receptor stimulation. 2-Cys peroxiredoxins are members of a novel peroxidase family that catalyze the H(2)O(2) reduction reaction in the presence of thioredoxin, thioredoxin reductase and NADPH. Several lines of evidence suggest that 2-Cys peroxiredoxins have dual roles as regulators of the H(2)O(2) signal and as defenders of oxidative stress. In particular, 2-Cys peroxiredoxin appears to provide selective, specific and localized control of receptor-mediated signal transduction. Thus, the therapeutic potential of 2-Cys peroxiredoxins is clear for diseases, such as cancer and cardiovascular diseases, that involve reactive oxygen species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号