共查询到20条相似文献,搜索用时 15 毫秒
1.
Jowin Kai Wei Ng Summer Lixin Zhang Hwee Cheng Tan Benedict Yan Julia Maria Martinez Gomez Wei Yu Tan Jian Hang Lam Grace Kai Xin Tan Eng Eong Ooi Sylvie Alonso 《PLoS pathogens》2014,10(4)
Dengue (DEN) represents the most serious arthropod-borne viral disease. DEN clinical manifestations range from mild febrile illness to life-threatening hemorrhage and vascular leakage. Early epidemiological observations reported that infants born to DEN-immune mothers were at greater risk to develop the severe forms of the disease upon infection with any serotype of dengue virus (DENV). From these observations emerged the hypothesis of antibody-dependent enhancement (ADE) of disease severity, whereby maternally acquired anti-DENV antibodies cross-react but fail to neutralize DENV particles, resulting in higher viremia that correlates with increased disease severity. Although in vitro and in vivo experimental set ups have indirectly supported the ADE hypothesis, direct experimental evidence has been missing. Furthermore, a recent epidemiological study has challenged the influence of maternal antibodies in disease outcome. Here we have developed a mouse model of ADE where DENV2 infection of young mice born to DENV1-immune mothers led to earlier death which correlated with higher viremia and increased vascular leakage compared to DENV2-infected mice born to dengue naïve mothers. In this ADE model we demonstrated the role of TNF-α in DEN-induced vascular leakage. Furthermore, upon infection with an attenuated DENV2 mutant strain, mice born to DENV1-immune mothers developed lethal disease accompanied by vascular leakage whereas infected mice born to dengue naïve mothers did no display any clinical manifestation. In vitro ELISA and ADE assays confirmed the cross-reactive and enhancing properties towards DENV2 of the serum from mice born to DENV1-immune mothers. Lastly, age-dependent susceptibility to disease enhancement was observed in mice born to DENV1-immune mothers, thus reproducing epidemiological observations.Overall, this work provides direct in vivo demonstration of the role of maternally acquired heterotypic dengue antibodies in the enhancement of dengue disease severity and offers a unique opportunity to further decipher the mechanisms involved. 相似文献
2.
Anon Srikiatkhachorn Sineewanlaya Wichit Robert V. Gibbons Sharone Green Daniel H. Libraty Timothy P. Endy Francis A. Ennis Siripen Kalayanarooj Alan L. Rothman 《PloS one》2012,7(12)
Background
Infection with dengue viruses (DENV) causes a wide range of manifestations from asymptomatic infection to a febrile illness called dengue fever (DF), to dengue hemorrhagic fever (DHF). The in vivo targets of DENV and the relation between the viral burden in these cells and disease severity are not known.Method
The levels of positive and negative strand viral RNA in peripheral blood monocytes, T/NK cells, and B cells and in plasma of DF and DHF cases were measured by quantitative RT-PCR.Results
Positive strand viral RNA was detected in monocytes, T/NK cells and B cells with the highest amounts found in B cells. Viral RNA levels in CD14+ cells and plasma were significantly higher in DHF compared to DF, and in cases with a secondary infection compared to those undergoing a primary infection. The distribution of viral RNA among cell subpopulations was similar in DF and DHF cases. Small amounts of negative strand RNA were found in a few cases only. The severity of plasma leakage correlated with viral RNA levels in plasma and in CD14+ cells.Conclusions
B cells were the principal cells containing DENV RNA in peripheral blood, but overall there was little active DENV RNA replication detectable in peripheral blood mononuclear cells (PBMC). Secondary infection and DHF were associated with higher viral burden in PBMC populations, especially CD14+ monocytes, suggesting that viral infection of these cells may be involved in disease pathogenesis. 相似文献3.
4.
Yang Liu Fuchun Zhang Jianying Liu Xiaoping Xiao Siyin Zhang Chengfeng Qin Ye Xiang Penghua Wang Gong Cheng 《PLoS pathogens》2014,10(2)
C-type lectins are a family of proteins with carbohydrate-binding activity. Several C-type lectins in mammals or arthropods are employed as receptors or attachment factors to facilitate flavivirus invasion. We previously identified a C-type lectin in Aedes aegypti, designated as mosquito galactose specific C-type lectin-1 (mosGCTL-1), facilitating the attachment of West Nile virus (WNV) on the cell membrane. Here, we first identified that 9 A. aegypti mosGCTL genes were key susceptibility factors facilitating DENV-2 infection, of which mosGCTL-3 exhibited the most significant effect. We found that mosGCTL-3 was induced in mosquito tissues with DENV-2 infection, and that the protein interacted with DENV-2 surface envelop (E) protein and virions in vitro and in vivo. In addition, the other identified mosGCTLs interacted with the DENV-2 E protein, indicating that DENV may employ multiple mosGCTLs as ligands to promote the infection of vectors. The vectorial susceptibility factors that facilitate pathogen invasion may potentially be explored as a target to disrupt the acquisition of microbes from the vertebrate host. Indeed, membrane blood feeding of antisera against mosGCTLs dramatically reduced mosquito infective ratio. Hence, the immunization against mosGCTLs is a feasible approach for preventing dengue infection. Our study provides a future avenue for developing a transmission-blocking vaccine that interrupts the life cycle of dengue virus and reduces disease burden. 相似文献
5.
James D. Brien Soila Sukupolvi-Petty Katherine L. Williams Chia-Ying Kao Lam Michael A. Schmid Syd Johnson Eva Harris Michael S. Diamond 《Journal of virology》2013,87(13):7747-7753
Dengue viruses are the most common arthropod-transmitted viral infection, with an estimated 390 million human infections annually and ∼3.6 billion people at risk. Currently, there are no approved vaccines or therapeutics available to control the global dengue virus disease burden. In this study, we demonstrate the binding, neutralizing activity, and therapeutic capacity of a novel bispecific dual-affinity retargeting molecule (DART) that limits infection of all four serotypes of dengue virus. 相似文献
6.
Edwige Rancès Travis K. Johnson Jean Popovici I?aki Iturbe-Ormaetxe Tasnim Zakir Coral G. Warr Scott L. O'Neill 《Journal of virology》2013,87(21):11945-11949
Wolbachia blocks dengue virus replication in Drosophila melanogaster as well as in Aedes aegypti. Using the Drosophila model and mutations in the Toll and Imd pathways, we showed that neither pathway is required for expression of the dengue virus-blocking phenotype in the Drosophila host. This provides additional evidence that the mechanistic basis of Wolbachia-mediated dengue virus blocking in insects is more complex than simple priming of the host insect innate immune system. 相似文献
7.
8.
Hui Zhao Tao Jiang Xi-Zhen Zhou Yong-Qiang Deng Xiao-Feng Li Shui-Ping Chen Shun-Ya Zhu Xi Zhou E-De Qin Cheng-Feng Qin 《PloS one》2014,9(1)
The worldwide expansion of four serotypes of dengue virus (DENV) poses great risk to global public health. Several vaccine candidates are under development. However, none is yet available for humans. In the present study, a novel strategy to produce tetravalent DENV vaccine based on envelope protein domain III (EDIII) was proposed. Tandem EDIIIs of two serotypes (type 1–2 and type 3–4) of DENV connected by a Gly-Ser linker ((Gly4Ser)3) were expressed in E. coli, respectively. Then, the two bivalent recombinant EDIIIs were equally mixed to form the tetravalent vaccine candidate MixBiEDIII, and used to immunize BALB/c mice. The results showed that specific IgG and neutralizing antibodies against all four serotypes of DENV were successfully induced in the MixBiEDIII employing Freund adjuvant immunized mice. Furthermore, in the suckling mouse model, sera from mice immunized with MixBiEDIII provided significant protection against four serotypes of DENV challenge. Our data demonstrated that MixBiEDIII, as a novel form of subunit vaccine candidates, might have the potential to be further developed as a tetravalent dengue vaccine in the near future. 相似文献
9.
10.
Objective
In Parkinson''s disease (PD), commonly reported risk factors for malnutrition in other populations commonly occur. Few studies have explored which of these factors are of particular importance in malnutrition in PD. The aim was to identify the determinants of nutritional status in people with Parkinson''s disease (PWP).Methods
Community-dwelling PWP (>18 years) were recruited (n = 125; 73M/52F; Mdn 70 years). Self-report assessments included Beck''s Depression Inventory (BDI), Spielberger Trait Anxiety Inventory (STAI), Scales for Outcomes in Parkinson''s disease – Autonomic (SCOPA-AUT), Modified Constipation Assessment Scale (MCAS) and Freezing of Gait Questionnaire (FOG-Q). Information about age, PD duration, medications, co-morbid conditions and living situation was obtained. Addenbrooke''s Cognitive Examination (ACE-R), Unified Parkinson''s Disease Rating Scale (UPDRS) II and UPDRS III were performed. Nutritional status was assessed using the Subjective Global Assessment (SGA) as part of the scored Patient-Generated Subjective Global Assessment (PG-SGA).Results
Nineteen (15%) were malnourished (SGA-B). Median PG-SGA score was 3. More of the malnourished were elderly (84% vs. 71%) and had more severe disease (H&Y: 21% vs. 5%). UPDRS II and UPDRS III scores and levodopa equivalent daily dose (LEDD)/body weight(mg/kg) were significantly higher in the malnourished (Mdn 18 vs. 15; 20 vs. 15; 10.1 vs. 7.6 respectively). Regression analyses revealed older age at diagnosis, higher LEDD/body weight (mg/kg), greater UPDRS III score, lower STAI score and higher BDI score as significant predictors of malnutrition (SGA-B). Living alone and higher BDI and UPDRS III scores were significant predictors of a higher log-adjusted PG-SGA score.Conclusions
In this sample of PWP, the rate of malnutrition was higher than that previously reported in the general community. Nutrition screening should occur regularly in those with more severe disease and depression. Community support should be provided to PWP living alone. Dopaminergic medication should be reviewed with body weight changes. 相似文献11.
James D. Brien S. Kyle Austin Soila Sukupolvi-Petty Katie M. O'Brien Syd Johnson Daved H. Fremont Michael S. Diamond 《Journal of virology》2010,84(20):10630-10643
Dengue viruses (DENV) comprise a family of related positive-strand RNA viruses that infect up to 100 million people annually. Currently, there is no approved vaccine or therapy to prevent infection or diminish disease severity. Protection against DENV is associated with the development of neutralizing antibodies that recognize the viral envelope (E) protein. Here, with the goal of identifying monoclonal antibodies (MAbs) that can function as postexposure therapy, we generated a panel of 82 new MAbs against DENV-3, including 24 highly neutralizing MAbs. Using yeast surface display, we localized the epitopes of the most strongly neutralizing MAbs to the lateral ridge of domain III (DIII) of the DENV type 3 (DENV-3) E protein. While several MAbs functioned prophylactically to prevent DENV-3-induced lethality in a stringent intracranial-challenge model of mice, only three MAbs exhibited therapeutic activity against a homologous strain when administered 2 days after infection. Remarkably, no MAb in our panel protected prophylactically against challenge by a strain from a heterologous DENV-3 genotype. Consistent with this, no single MAb neutralized efficiently the nine different DENV-3 strains used in this study, likely because of the sequence variation in DIII within and between genotypes. Our studies suggest that strain diversity may limit the efficacy of MAb therapy or tetravalent vaccines against DENV, as neutralization potency generally correlated with a narrowed genotype specificity.Dengue viruses (DENV) cause the most common arthropod-borne viral infection in humans worldwide, with ∼50 million to 100 million people infected annually and ∼2.5 billion people at risk (13, 61). Infection by four closely related but serologically distinct viruses of the Flavivirus genus (DENV serotypes 1, 2, 3, and 4 [DENV-1 to -4, respectively]) cause dengue fever (DF), an acute, self-limiting, yet severe, febrile illness, or dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), a potentially fatal syndrome characterized by vascular leakage and a bleeding diathesis. Specific treatment or prevention of dengue disease is supportive, as there is no approved antiviral therapy or vaccine available.DENV has an ∼11-kb, single-stranded, positive-sense RNA genome that is translated into a polyprotein and is cleaved posttranslationally into three structural (envelope [E], pre/membrane [prM], and capsid [C]) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. The three structural proteins encapsidate a single infectious RNA of the DENV genome, whereas the nonstructural proteins have key enzymatic or regulatory functions that promote replication. Additionally, several DENV proteins are multifunctional and modulate cell-intrinsic and cell-extrinsic host immune responses (10).Most flavivirus-neutralizing antibodies recognize the structural E protein (reviewed in reference 40). Based on X-ray crystallographic analysis (32, 33), the DENV E protein is divided into three domains: domain I (DI), which is an 8-stranded β-barrel, domain II (DII), which consists of 12 β-strands, and domain III (DIII), which adopts an immunoglobulin-like fold. Mature DENV virions are covered by 90 antiparallel E protein homodimers, arranged flat along the surface of the virus with quasi-icosahedral symmetry (25). Studies with mouse monoclonal antibodies (MAbs) against DENV-1 and DENV-2 have shown that highly neutralizing anti-DENV antibodies are serotype specific and recognize primarily the lateral-ridge epitope on DIII (15, 49, 53). Additionally, subcomplex-specific MAbs, which recognize some but not all DENV serotypes, recognize a distinct, adjacent epitope on the A β-strand of DIII and also may be inhibitory (16, 28, 42, 53, 56). Complex-specific or flavivirus cross-reactive MAbs recognize epitopes in both DII and DIII and are generally less strongly neutralizing (8, 53).Beyond having genetic complexity (the E proteins of the four distinct serotypes are 72 to 80% identical at the amino acid level), viruses of each serotype can be further divided into closely related genotypes (43, 44, 57). DENV-3 is divided into 4 or 5 distinct genotypes (depending on the study), with up to 4% amino acid variation between genotypes and up to 2% amino acid variation within a genotype (26, 58, 62). The individual genotypes of DENV-3 are separated temporally and geographically (1), with genotype I (gI) strains located in Indonesia, gII strains in Thailand, and gIII strains in Sri Lanka and the Americas. Few examples of strains of gIV and gV exist from samples isolated after 1980 (26, 62). Infection with one DENV serotype is believed to confer long-term durable immunity against strains of the homologous but not heterologous DENV serotypes due to the specificity of neutralizing antibodies and protective CD8+ T cells (45). Indeed, epidemiological studies suggest that a preexisting cross-reactive antibody (7, 24) and/or T cells (34, 35, 64) can enhance the risk of DHF/DSS during challenge with a distinct DENV serotype. Nonetheless, few reports have examined how intergenotypic or even strain variation within a serotype affects the protective efficacy of neutralizing antibodies. This concept is important because the development of tetravalent DENV vaccines with attenuated prototype strains assumes that neutralizing antibody responses, which are lower during vaccination than during natural infection, will protect completely against all genotypes within a given serotype (60). However, a recent study showed markedly disparate neutralizing activities and levels of protection of individual anti-DENV-1 MAbs against different DENV-1 genotypes (49).Herein, we developed a panel of 82 new DENV-3 MAbs and examined their cross-reactivities, epitope specificities, neutralization potential at the genotype level in cell culture, and protective capacities in vivo. The majority of strongly neutralizing MAbs in this panel mapped to specific sites in DIII of the E protein. Remarkably, because of the scale of the sequence variation of DENV-3 strains, most of the protective antibodies showed significant strain specificity in their functional profiles. 相似文献
12.
Herpes simplex virus 2 (HSV-2) 0ΔNLS is a live HSV-2 ICP0
- mutant vaccine strain that is profoundly attenuated in vivo due to its interferon-hypersensitivity. Recipients of the HSV-2 0ΔNLS vaccine are resistant to high-dose HSV-2 challenge as evidenced by profound reductions in challenge virus spread, shedding, disease and mortality. In the current study, we investigated the requirements for HSV-2 0ΔNLS vaccine-induced protection. Studies using (UV)-inactivated HSV-2 0ΔNLS revealed that self-limited replication of the attenuated virus was required for effective protection from vaginal or ocular HSV-2 challenge. Diminished antibody responses in recipients of the UV-killed HSV-2 vaccine suggested that antibodies might be playing a critical role in early protection. This hypothesis was investigated in B-cell-deficient μMT mice. Vaccination with live HSV-2 0ΔNLS induced equivalent CD8+ T cell responses in wild-type and μMT mice. Vaccinated μMT mice shed ~40-fold more infectious HSV-2 at 24 hours post-challenge relative to vaccinated wild-type (B-cell+) mice, and most vaccinated μMT mice eventually succumbed to a slowly progressing HSV-2 challenge. Importantly, passive transfer of HSV-2 antiserum restored full protection to HSV-2 0ΔNLS-vaccinated μMT mice. The results demonstrate that B cells are required for complete vaccine-induced protection against HSV-2, and indicate that virus-specific antibodies are the dominant mediators of early vaccine-induced protection against HSV-2. 相似文献
13.
Ruklanthi de Alwis Katherine L. Williams Michael A. Schmid Chih-Yun Lai Bhumi Patel Scott A. Smith James E. Crowe Wei-Kung Wang Eva Harris Aravinda M. de Silva 《PLoS pathogens》2014,10(10)
Dengue viruses (DENV) are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE) is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE) protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to the development of safe, non-enhancing vaccines against dengue. 相似文献
14.
15.
Sangeeta R. Kashyap Dima L. Diab Allison R. Baker Lisa Yerian Harpreet Bajaj Courtney Gray‐McGuire Philip R. Schauer Manjula Gupta Ariel E. Feldstein Stanley L. Hazen Catherine M. Stein 《Obesity (Silver Spring, Md.)》2009,17(9):1696-1701
Although nonalcoholic fatty liver disease (NAFLD) is frequent in obesity, the metabolic determinants of advanced liver disease remain unclear. Adipokines reflect inflammation and insulin resistance associated with obesity and may identify advanced NAFLD. At the time of obesity surgery, 142 consecutive patients underwent liver biopsy and had their preoperative demographic and clinical data obtained. Liver histology was scored by the NAFLD activity score, and patients subdivided into four groups. Concentrations of retinol‐binding protein 4 (RBP4), adiponectin, tumor necrosis factor‐α (TNF‐α), and leptin were determined ~1 week prior to surgery and results were related to liver histology. The prevalence of no NAFLD was 30%, simple steatosis 23%, borderline nonalcoholic steatohepatitis (NASH) 28%, and definitive NASH 18%. Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS) prevalence were 39 and 75%, respectively, and did not differ across the four histological groups (P = NS). Triglyceride (TG) and alanine transaminase (ALT) levels, strongly associated with advanced stages of NAFLD and NASH (P = 0.04). TG levels >150 mg/dl, increased the likelihood of NASH 3.4‐fold, whereas high‐density lipoprotein (HDL) levels predicted no NAFLD (P < 0.01). Concentrations of TNF‐α, leptin, and RBP4 did not differ among histological groups and thus did not identify NASH; however, there was a trend for adiponectin to be lower in NASH vs. no NAFLD (P = 0.061). In summary, both TG and ALT levels assist in identification of NASH in an obesity surgery cohort. These findings underscore the importance of fatty acid delivery mechanisms to NASH development in severely obese individuals. 相似文献
16.
Antibodies play a central role in prophylaxis against many infectious agents. While neutralization is a primary function of antibodies, the Fc- and complement-dependent activities of these multifunctional proteins may also be critical in their ability to provide protection against most viruses. Protection against viral pathogens in vivo is complex, and while virus neutralization—the ability of antibody to inactivate virus infectivity, often measured in vitro—is important, it is often only a partial contributor in protection. The rapid fluorescent focus inhibition test (RFFIT) remains the “gold standard” assay to measure rabies virus–neutralizing antibodies. In addition to neutralization, the rabies-specific antigen-binding activity of antibodies may be measured through enzyme-linked immunosorbent assays (ELISAs), as well as other available methods. For any disease, in selecting the appropriate assay(s) to use to assess antibody titers, assay validation and how they are interpreted are important considerations—but for a fatal disease like rabies, they are of paramount importance. The innate limitations of a one-dimensional laboratory test for rabies antibody measurement, as well as the validation of the method of choice, must be carefully considered in the selection of an assay method and for the interpretation of results that might be construed as a surrogate of protection. 相似文献
17.
James A. Potts Robert V. Gibbons Alan L. Rothman Anon Srikiatkhachorn Stephen J. Thomas Pra-on Supradish Stephenie C. Lemon Daniel H. Libraty Sharone Green Siripen Kalayanarooj 《PLoS neglected tropical diseases》2010,4(8)
Background
Dengue virus is endemic in tropical and sub-tropical resource-poor countries. Dengue illness can range from a nonspecific febrile illness to a severe disease, Dengue Shock Syndrome (DSS), in which patients develop circulatory failure. Earlier diagnosis of severe dengue illnesses would have a substantial impact on the allocation of health resources in endemic countries.Methods and Findings
We compared clinical laboratory findings collected within 72 hours of fever onset from a prospective cohort children presenting to one of two hospitals (one urban and one rural) in Thailand. Classification and regression tree analysis was used to develop diagnostic algorithms using different categories of dengue disease severity to distinguish between patients at elevated risk of developing a severe dengue illness and those at low risk. A diagnostic algorithm using WBC count, percent monocytes, platelet count, and hematocrit achieved 97% sensitivity to identify patients who went on to develop DSS while correctly excluding 48% of non-severe cases. Addition of an indicator of severe plasma leakage to the WHO definition led to 99% sensitivity using WBC count, percent neutrophils, AST, platelet count, and age.Conclusions
This study identified two easily applicable diagnostic algorithms using early clinical indicators obtained within the first 72 hours of illness onset. The algorithms have high sensitivity to distinguish patients at elevated risk of developing severe dengue illness from patients at low risk, which included patients with mild dengue and other non-dengue febrile illnesses. Although these algorithms need to be validated in other populations, this study highlights the potential usefulness of specific clinical indicators early in illness. 相似文献18.
Camila Zanluca Giovanny Augusto Camacho Antevere Mazzarotto Juliano Bordignon Claudia Nunes Duarte dos Santos 《PloS one》2014,9(11)
Dengue is the most prevalent human arboviral disease. The morbidity related to dengue infection supports the need for an early, quick and effective diagnostic test. Brazil is a hotspot for dengue, but no serological diagnostic test has been produced using Brazilian dengue virus isolates. This study aims to improve the development of immunodiagnostic methods for dengue virus (DENV) detection through the production and characterization of 22 monoclonal antibodies (mAbs) against Brazilian isolates of DENV-1, -2 and -3. The mAbs include IgG2bκ, IgG2aκ and IgG1κ isotypes, and most were raised against the envelope or the pre-membrane proteins of DENV. When the antibodies were tested against the four DENV serotypes, different reactivity patterns were identified: group-specific, subcomplex specific (DENV-1, -3 and -4 and DENV-2 and -3) and dengue serotype-specific (DENV-2 or -3). Additionally, some mAbs cross-reacted with yellow fever virus (YFV), West Nile virus (WNV) and Saint Louis encephalitis virus (SLEV). None of the mAbs recognized the alphavirus Venezuelan equine encephalitis virus (VEEV). Furthermore, mAbs D3 424/8G, D1 606/A12/B9 and D1 695/12C/2H were used to develop a capture enzyme-linked immunosorbent assay (ELISA) for anti-dengue IgM detection in sera from patients with acute dengue. To our knowledge, these are the first monoclonal antibodies raised against Brazilian DENV isolates, and they may be of special interest in the development of diagnostic assays, as well as for basic research. 相似文献
19.
Soila Sukupolvi-Petty S. Kyle Austin Michael Engle James D. Brien Kimberly A. Dowd Katherine L. Williams Syd Johnson Rebeca Rico-Hesse Eva Harris Theodore C. Pierson Daved H. Fremont Michael S. Diamond 《Journal of virology》2010,84(18):9227-9239
Dengue virus (DENV) is the most prevalent insect-transmitted viral disease in humans globally, and currently no specific therapy or vaccine is available. Protection against DENV and other related flaviviruses is associated with the development of antibodies against the viral envelope (E) protein. Although prior studies have characterized the neutralizing activity of monoclonal antibodies (MAbs) against DENV type 2 (DENV-2), none have compared simultaneously the inhibitory activity against a genetically diverse range of strains in vitro, the protective capacity in animals, and the localization of epitopes. Here, with the goal of identifying MAbs that can serve as postexposure therapy, we investigated in detail the functional activity of a large panel of new anti-DENV-2 mouse MAbs. Binding sites were mapped by yeast surface display and neutralization escape, cell culture inhibition assays were performed with homologous and heterologous strains, and prophylactic and therapeutic activity was evaluated with two mouse models. Protective MAbs localized to epitopes on the lateral ridge of domain I (DI), the dimer interface, lateral ridge, and fusion loop of DII, and the lateral ridge, C-C′ loop, and A strand of DIII. Several MAbs inefficiently inhibited at least one DENV-2 strain of a distinct genotype, suggesting that recognition of neutralizing epitopes varies with strain diversity. Moreover, antibody potency generally correlated with a narrowed genotype and serotype specificity. Five MAbs functioned efficiently as postexposure therapy when administered as a single dose, even 3 days after intracranial infection of BALB/c mice. Overall, these studies define the structural and functional complexity of antibodies against DENV-2 with protective potential.Dengue virus (DENV), a member of the Flaviviridae family of RNA viruses, is related to several other human pathogens of global concern, including yellow fever and tick-borne, West Nile, and Japanese encephalitis viruses. DENV infection in humans occurs after Aedes aegypti or Aedes albopictus mosquito inoculation and results in clinical disease, ranging from a febrile illness (dengue fever [DF]) to a life-threatening hemorrhagic and capillary leak syndrome (dengue hemorrhagic fever [DHF]/dengue shock syndrome [DSS]). Globally, there is significant diversity among DENV strains, including four distinct serotypes (DENV type 1 [DENV-1], DENV-2, DENV-3, and DENV-4) that differ at the amino acid level by 25 to 40%. Additional complexity occurs within each serotype, as genotypes vary from one another by up to 3% at the amino acid level (21, 49). No approved antiviral treatment is currently available, and several candidate tetravalent vaccines remain in clinical development (reviewed in reference 11). Because of the increased geographic range of its mosquito vectors, urbanization, and international travel, DENV continues to spread worldwide and now causes an estimated 50 to 100 million infections and 250,000 to 500,000 cases of DHF/DSS per year, with 2.5 billion people at risk (68).DENV is an enveloped icosahedral virus with a single-stranded, positive-polarity RNA genome. The 10.7-kb genome is translated as a single polyprotein, which is cleaved into three structural proteins (capsid [C], premembrane/membrane [prM/M], and envelope [E]) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) by host and viral proteases. The mature DENV virion is ∼500 Å in diameter, with a highly organized outer protein shell, a 50-Å lipid membrane bilayer, and a nucleocapsid core (26). Mature DENV virions are covered by 90 anti-parallel E protein homodimers, arranged flat along the surface with quasi-icosahedral symmetry. The immature virion, which lacks cleavage of the prM protein, has a rough surface with 60 spikes each composed of three prM-E heterodimers (7, 73). Exposure to mildly acidic conditions in the trans-Golgi network promotes virus maturation through a structural rearrangement of the flavivirus E proteins and cleavage of prM to M by a furin-like protease (29, 66, 69, 70). The ectodomain of DENV E protein is comprised of three discrete domains (34-36, 39). Domain I (DI) is a central, eight-stranded β-barrel, which contains a single N-linked glycan in most DENV strains. DII is a long, finger-like protrusion from DI, with the highly conserved fusion peptide at its distal end and a second N-linked glycan that recognizes DC-SIGN (37, 38, 46, 59). DIII, which adopts an immunoglobulin-like fold, has been suggested to contain cell surface receptor recognition sites (5, 64, 71). Several groups have recently defined contact residues for type-specific, subcomplex-specific, and cross-reactive monoclonal antibodies (MAbs) that recognize DIII of DENV-2 (16, 17, 31, 47, 57, 61). Type-specific MAbs with neutralizing activity against DENV-2 localized to the BC, DE, and FG loops on the lateral ridge of DIII, whereas subcomplex-specific MAbs recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310.To date, no study has compared the in vitro inhibitory activity of MAbs in cells against a genetically diverse range of DENV-2 strains and their protective capacity in animals. Here, we had the goal of generating strongly neutralizing MAbs that would recognize virtually all DENV-2 strains and function as a possible postexposure therapy. Twenty-four new anti-DENV-2 mouse MAbs were generated with moderate or strong neutralizing activity against the homologous virus in cell culture assays. Binding sites were mapped for the majority of these by yeast surface display, identifying distinct epitopes in regions in DI (lateral ridge), DII (dimer interface, lateral ridge, and fusion loop), and DIII (lateral ridge, C-C′ loop, and A strand). Several MAbs failed to neutralize efficiently at least one DENV-2 strain of a distinct genotype, suggesting that antibody recognition of neutralizing epitopes varies among DENV-2 genotypes.To begin to assess the utility of this new panel of inhibitory MAbs as possible therapeutics against DENV-2, we evaluated their protective capacity in a stringent intracranial challenge model in BALB/c mice. Among the 16 neutralizing MAbs tested in mice, most were protective when given as prophylaxis. Seven of these had postexposure therapeutic activity when administered as a single dose by intraperitoneal route even 3 days after intracranial infection. For the MAbs with the greatest therapeutic potential, protection was confirmed with an antibody-enhanced vascular leakage mouse model (2, 72) of DENV-2 infection. 相似文献
20.
Aneela Fatima Haiying Wang Keren Kang Liliang Xia Ying Wang Wei Ye Jufang Wang Xiaoning Wang 《PloS one》2014,9(4)
The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection. 相似文献