首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.  相似文献   

2.
Genome replication is a fundamental requirement for the proliferation of all cells. Throughout the domains of life, conserved DNA replication initiation proteins assemble at specific chromosomal loci termed replication origins and direct loading of replicative helicases (1). Despite decades of study on bacterial replication, the diversity of bacterial chromosome origin architecture has confounded the search for molecular mechanisms directing the initiation process. Recently a basal system for opening a bacterial chromosome origin (oriC) was proposed (2). In the model organism Bacillus subtilis, a pair of double-stranded DNA (dsDNA) binding sites (DnaA‐boxes) guide the replication initiator DnaA onto adjacent single-stranded DNA (ssDNA) binding motifs (DnaA‐trios) where the protein assembles into an oligomer that stretches DNA to promote origin unwinding. We report here that these core elements are predicted to be present in the majority of bacterial chromosome origins. Moreover, we find that the principle activities of the origin unwinding system are conserved in vitro and in vivo. The results suggest that this basal mechanism for oriC unwinding is broadly functionally conserved and therefore may represent an ancestral system to open bacterial chromosome origins.  相似文献   

3.
Eukaryotic DNA replication initiates from multiple sites on each chromosome called replication origins (origins). In the budding yeast Saccharomyces cerevisiae, origins are defined at discrete sites. Regular spacing and diverse firing characteristics of origins are thought to be required for efficient completion of replication, especially in the presence of replication stress. However, a S. cerevisiae chromosome III harboring multiple origin deletions has been reported to replicate relatively normally, and yet how an origin-deficient chromosome could accomplish successful replication remains unknown. To address this issue, we deleted seven well-characterized origins from chromosome VI, and found that these deletions do not cause gross growth defects even in the presence of replication inhibitors. We demonstrated that the origin deletions do cause a strong decrease in the binding of the origin recognition complex. Unexpectedly, replication profiling of this chromosome showed that DNA replication initiates from non-canonical loci around deleted origins in yeast. These results suggest that replication initiation can be unexpectedly flexible in this organism.  相似文献   

4.
The protozoan parasite Trypanosoma brucei lives in the bloodstream of vertebrates or in a tsetse fly. Expression of a GPI-phospholipase C polypeptide (GPI-PLCp) in the parasite is restricted to the bloodstream form. Events controlling the amount of GPI-PLCp expressed during differentiation are not completely understood. Our metabolic “pulse-chase” analysis reveals that GPI-PLCp is stable in bloodstream form. However, during differentiation of bloodstream to insect stage (procyclic) T. brucei, translation GPI-PLC mRNA ceases within 8 h of initiating transformation. GPI-PLCp is not lost precipitously from newly transformed procyclic trypanosomes. Nascent procyclics contain 400-fold more GPI-PLCp than established insect stage T. brucei. Reduction of GPI-PLCp in early-stage procyclics is linked to parasite replication. Sixteen cell divisions are required to reduce the amount of GPI-PLCp in newly differentiated procyclics to levels present in the established procyclic. GPI-PLCp is retained in strains of T. brucei that fail to replicate after differentiation of the bloodstream to the procyclic form. Thus, at least two factors control levels of GPI-PLCp during differentiation of bloodstream T. brucei; (i) repression of GPI-PLC mRNA translation, and (ii) sustained replication of newly transformed procyclic T. brucei. These studies illustrate the importance of repeated cell divisions in controlling the steady-state amount of GPI-PLCp during differentiation of the African trypanosome.  相似文献   

5.
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep, that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3–H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53''s functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53Δ mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins and growth of this mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a “nucleosome buffer”, interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.Key words: DNA replication, Rad53, histones, checkpoint, origins of replication  相似文献   

6.
7.
Cultures of Tetrahymena thermophila were deprived of nutrients and later refed with enriched medium to obtain partial synchrony of DNA replication. Preferential replication of the extrachromosomal, macronuclear ribosomal RNA genes (rDNA) was found to occur at 40-80 min after refeeding. The rDNA accounted for one half of the label incorporated into cellular DNA during this period. Electron microscopy of the purified rDNA showed 1% replicative intermediates. Their structure was that expected for bidirectional replication of the linear rDNA from an origin or origins located in the central nontranscribed region of the palindromic molecule. Similar forms had previously been observed for the rDNA of a related species, Tetrahymena pyriformis. The electron microscopic data was consistent with an origin of replication located approximatley 600 base pairs from the center of the rDNA of T. thermophila, in contrast to a more central location in the rDNA of T. pyriformis. One implication of an off-center origin of replication is that there are two such sequences per palindromic molecule.  相似文献   

8.
The halophilic archaeon Haloferax volcanii has a multireplicon genome, consisting of a main chromosome, three secondary chromosomes, and a plasmid. Genes for the initiator protein Cdc6/Orc1, which are commonly located adjacent to archaeal origins of DNA replication, are found on all replicons except plasmid pHV2. However, prediction of DNA replication origins in H. volcanii is complicated by the fact that this species has no less than 14 cdc6/orc1 genes. We have used a combination of genetic, biochemical, and bioinformatic approaches to map DNA replication origins in H. volcanii. Five autonomously replicating sequences were found adjacent to cdc6/orc1 genes and replication initiation point mapping was used to confirm that these sequences function as bidirectional DNA replication origins in vivo. Pulsed field gel analyses revealed that cdc6/orc1-associated replication origins are distributed not only on the main chromosome (2.9 Mb) but also on pHV1 (86 kb), pHV3 (442 kb), and pHV4 (690 kb) replicons. Gene inactivation studies indicate that linkage of the initiator gene to the origin is not required for replication initiation, and genetic tests with autonomously replicating plasmids suggest that the origin located on pHV1 and pHV4 may be dominant to the principal chromosomal origin. The replication origins we have identified appear to show a functional hierarchy or differential usage, which might reflect the different replication requirements of their respective chromosomes. We propose that duplication of H. volcanii replication origins was a prerequisite for the multireplicon structure of this genome, and that this might provide a means for chromosome-specific replication control under certain growth conditions. Our observations also suggest that H. volcanii is an ideal organism for studying how replication of four replicons is regulated in the context of the archaeal cell cycle.  相似文献   

9.
Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.  相似文献   

10.
Aurora B kinase plays essential roles in mitosis and cytokinesis in eukaryotes. In the procyclic form of Trypanosoma brucei, the Aurora B homolog TbAUK1 regulates mitosis and cytokinesis, phosphorylates the Tousled-like kinase TbTLK1, interacts with two mitotic kinesins TbKIN-A and TbKIN-B and forms a novel chromosomal passenger complex (CPC) with two novel proteins TbCPC1 and TbCPC2. Here we show with time-lapse video microscopy the time course of CPC trans-localization from the spindle midzone in late anaphase to the dorsal side of the cell where the anterior end of daughter cell is tethered, and followed by a glide toward the posterior end to divide the cell, representing a novel mode of cytokinesis in eukaryotes. The three subunits of CPC, TbKIN-B and TbTLK1 interact with one another suggesting a close association among the five proteins. An ablation of TbTLK1 inhibited the subsequent trans-localization of CPC and TbKIN-B, whereas a knockdown of CPC or TbKIN-B disrupted the spindle pole localization of TbTLK1 during mitosis. In the bloodstream form of T. brucei, the five proteins also play essential roles in chromosome segregation and cytokinesis and display subcellular localization patterns similar to that in the procyclic form. The CPC in bloodstream form also undergoes a trans-localization during cytokinesis similar to that in the procyclic form. All together, our results indicate that the five-protein complex CPC-TbTLK1-TbKIN-B plays key roles in regulating chromosome segregation in the early phase of mitosis and that the highly unusual mode of cytokinesis mediated by CPC occurs in both forms of trypanosomes.  相似文献   

11.
12.

Background

While the molecular mechanisms of DNA-protein specificity at the origin of replication have been determined in many model organisms, these interactions remain unknown in the majority of higher eukaryotes and numerous vertebrate viruses. Similar to many viral origins of replication, adeno-associated virus (AAV) utilizes a cis-acting origin of replication and a virus specific Replication protein (Rep) to faithfully carry out self-priming replication. The mechanisms of AAV DNA replication are generally well understood. However, the molecular basis of specificity between the Rep protein and the viral origin of replication between different AAV serotypes remains uncharacterized.

Methodology/Principal Findings

By generating a panel of chimeric and mutant origins between two AAV serotypes, we have mapped two independent DNA-Protein interfaces involved in replicative specificity. In vivo replication assays and structural modeling demonstrated that three residues in the AAV2 Rep active site are necessary to cleave its cognate origin. An analogous origin (AAV5) possesses a unique interaction between an extended Rep binding element and a 49 aa region of Rep containing two DNA binding interfaces.

Conclusions/Significance

The elucidation of these structure-function relationships at the AAV origin led to the creation of a unique recombinant origin and compatible Rep protein with properties independent of either parent serotype. This novel origin may impact the safety and efficacy of AAV as a gene delivery tool. This work may also explain the unique ability of certain AAV serotypes to achieve site-directed integration into the human chromosome. Finally, this result impacts the study of conserved DNA viruses which employ rolling circle mechanisms of replication.  相似文献   

13.
Trypanosoma brucei causes human African trypanosomiasis and sequentially expresses distinct VSGs, its major surface antigen, to achieve host immune evasion. VSGs are monoallelically expressed from subtelomeric loci, and telomere proteins regulate VSG monoallelic expression and VSG switching. T. brucei telomerase is essential for telomere maintenance, but no regulators of telomerase have been identified. T. brucei appears to lack OB fold-containing telomere-specific ssDNA binding factors that are critical for coordinating telomere G- and C-strand syntheses in higher eukaryotes. We identify POLIE as a telomere protein essential for telomere integrity. POLIE-depleted cells have more frequent VSG gene conversion-mediated VSG switching and an increased amount of telomeric circles (T-circles), indicating that POLIE suppresses DNA recombination at the telomere/subtelomere. POLIE-depletion elongates telomere 3′ overhangs dramatically, indicating that POLIE is essential for coordinating DNA syntheses of the two telomere strands. POLIE depletion increases the level of telomerase-dependent telomere G-strand extension, identifying POLIE as the first T. brucei telomere protein that suppresses telomerase. Furthermore, depletion of POLIE results in an elevated telomeric C-circle level, suggesting that the telomere C-strand experiences replication stress and that POLIE may promote telomere C-strand synthesis. Therefore, T. brucei uses a novel mechanism to coordinate the telomere G- and C-strand DNA syntheses.  相似文献   

14.
Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4–5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG) content also increased 4–5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. β-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1tfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.  相似文献   

15.
DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data.  相似文献   

16.
Genetic evidence suggests that DNA polymerase epsilon (Pol epsilon) has a noncatalytic essential role during the early stages of DNA replication initiation. Herein, we report the cloning and characterization of the second largest subunit of Pol epsilon in fission yeast, called Dpb2. We demonstrate that Dpb2 is essential for cell viability and that a temperature-sensitive mutant of dpb2 arrests with a 1C DNA content, suggesting that Dpb2 is required for initiation of DNA replication. Using a chromatin immunoprecipitation assay, we show that Dpb2, binds preferentially to origin DNA at the beginning of S phase. We also show that the C terminus of Pol epsilon associates with origin DNA at the same time as Dpb2. We conclude that Dpb2 is an essential protein required for an early step in DNA replication. We propose that the primary function of Dpb2 is to facilitate assembly of the replicative complex at the start of S phase. These conclusions are based on the novel cell cycle arrest phenotype of the dpb2 mutant, on the previously uncharacterized binding of Dpb2 to replication origins, and on the observation that the essential function of Pol epsilon is not dependent on its DNA synthesis activity.  相似文献   

17.
18.
The bacteriophage T4 has served as an in vitro model for the study of DNA replication for several decades, yet less is known about this process during infection. Recent work has shown that viral DNA synthesis is initiated from at least five origins of replication distributed across the 172 kb chromosome, but continued synthesis is dependent on recombination. Two proteins are predicted to facilitate loading of the hexameric 41 helicase at the origins, the Dda accessory helicase and the 59 loading protein. Using a real time, genome-wide assay to monitor replication during infections, it is shown here that dda mutant viruses no longer preferentially initiate synthesis near the origins, implying that the Dda accessory helicase has a fundamental role in origin selection and activation. In contrast, at least two origins function efficiently without the 59 loading protein, indicating that other factors load the 41 helicase at these loci. Hence, normal T4 replication includes two mechanistically distinct classes of origins, one requiring the 59 helicase loader, and a second that does not. Since both mechanisms require an additional factor, repEB, for sustained activation, normal T4 origin function appears to include at least three common elements, origin selection and initial activation, replisome loading, and persistence.  相似文献   

19.
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep,that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3-H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53's functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53D mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins, and growth of a rad53-FHA mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a "nucleosome buffer," interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.  相似文献   

20.
Phosphagen energy-buffering systems play an essential role in regulating the cellular energy homeostasis in periods of high-energy demand or energy supply fluctuations. Here we describe the phosphoarginine/arginine kinase system of the kinetoplastid parasite Trypanosoma brucei, consisting of three highly similar arginine kinase isoforms (TbAK1-3). Immunofluorescence microscopy using myc-tagged protein versions revealed that each isoform is located in a specific subcellular compartment: TbAK1 is exclusively found in the flagellum, TbAK2 in the glycosome, and TbAK3 in the cytosol of T. brucei. The flagellar location of TbAK1 is dependent on a 22 amino acid long N-terminal sequence, which is sufficient for targeting a GFP-fusion protein to the trypanosome flagellum. The glycosomal location of TbAK2 is in agreement with the presence of a conserved peroxisomal targeting signal, the C-terminal tripeptide ‘SNL’. TbAK3 lacks any apparent targeting sequences and is accordingly located in the cytosol of the parasite. Northern blot analysis indicated that each TbAK isoform is differentially expressed in bloodstream and procyclic forms of T. brucei, while the total cellular arginine kinase activity was 3-fold higher in bloodstream form trypanosomes. These results suggest a substantial change in the temporal and spatial energy requirements during parasite differentiation. Increased arginine kinase activity improved growth of procyclic form T. brucei during oxidative challenges with hydrogen peroxide. Elimination of the total cellular arginine kinase activity by RNA interference significantly decreased growth (>90%) of procyclic form T. brucei under standard culture conditions and was lethal for this life cycle stage in the presence of hydrogen peroxide. The putative physiological roles of the different TbAK isoforms in T. brucei are further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号