首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
NS5A of the hepatitis C virus (HCV) is a highly phosphorylated protein involved in resistance against interferon and required most likely for replication of the viral genome. Phosphorylation of this protein is mediated by a cellular kinase(s) generating multiple proteins with different electrophoretic mobilities. In the case of the genotype 1b isolate HCV-J, in addition to the basal phosphorylated NS5A (designated pp56), a hyperphosphorylated form (pp58) was found on coexpression of NS4A (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). Using a comparative analysis of two full-length genomes of genotype 1b, competent or defective for NS5A hyperphosphorylation, we investigated the requirements for this NS5A modification. We found that hyperphosphorylation occurs when NS5A is expressed as part of a continuous NS3-5A polyprotein but not when it is expressed on its own or trans complemented with one or several other viral proteins. Results obtained with chimeras of both genomes show that single amino acid substitutions within NS3 that do not affect polyprotein cleavage can enhance or reduce NS5A hyperphosphorylation. Furthermore, mutations in the central or carboxy-terminal NS4A domain as well as small deletions in NS4B can also reduce or block hyperphosphorylation without affecting polyprotein processing. These requirements most likely reflect the formation of a highly ordered NS3-5A multisubunit complex responsible for the differential phosphorylation of NS5A and probably also for modulation of its biological activities.  相似文献   

3.
The nonstructural protein NS5A of hepatitis c virus (HCV) has been demonstrated to be a phosphoprotein with an apparent molecular mass of 56 kDa. In the presence of other viral proteins, p56 is converted into a slower-migrating form of NS5A (p58) by additional phosphorylation events. In this report, we show that the presence of NS3, NS4A, and NS4B together with NS5A is necessary and sufficient for the generation of the hyperphosphorylated form of NS5A (p58) and that all proteins must be encoded on the same polyprotein (in cis). Kinetic studies of NS5A synthesis and pulse-chase experiments demonstrate that fully processed NS5A is the substrate for the formation of p58 and that p56 is converted to p58. To investigate the role of NS3 in NS5A hyperphosphorylation, point and deletion mutations were introduced into NS3 in the context of a polyprotein containing the proteins from NS3 to NS5A. Mutation of the catalytic serine residue into alanine abolished protease activity of NS3 and resulted in total inhibition of NS5A hyperphosphorylation, even if polyprotein processing was allowed by addition of NS3 and NS4A in trans. The same result was obtained by deletion of the first 10 or 28 N-terminal amino acids of NS3, which are known to be important for the formation of a stable complex between NS3 and its cofactor NS4A. These data suggest that the formation of p58 is closely connected to HCV polyprotein processing events. Additional data obtained with NS3 containing the 34 C-terminal residues of NS2 provide evidence that in addition to NS3 protease activity the authentic N-terminal sequence is required for NS5A hyperphosphorylation.  相似文献   

4.
目的:建立丙型肝炎病毒NS3/4A丝氨酸蛋白酶胞内荧光检测方法。方法:利用EGFP分子内合适位点可以插入一定长度外源片段而不影响荧光性能的特性,构建EGFP分子内插入NS3/4A蛋白酶识别序列NS5AB的EGFP-5AB重组分子。将EGFP-5AB与NS3/4A蛋白酶共表达,若短肽链被切断,则EGFP的两个部分解离,荧光消失,从而可以监测HCV NS3/4A蛋白酶的存在。通过将NS5AB插入三种不同位点,寻找最合适的插入位点;将EGFP-5AB转染进入不同宿主细胞,验证其在不同细胞的表达情况并选择最佳宿主细胞。结果:确定EGFP 173-174氨基酸位点是合适的插入位点;确定CHO-K1为理想的荧光检测系统宿主细胞;在构建的细胞模型中,能够检测到EGFP被切割后的条带,但检测不到荧光信号,说明EGFP-5AB蛋白被有效切割,该方法可以检测到NS3/4A丝氨酸蛋白酶的存在。结论:成功构建了一种在哺乳动物细胞中检测NS3/4A蛋白酶切割活性的荧光检测方法。  相似文献   

5.

Zika virus (ZIKV) is a Flavivirus associated with several neurological complications. Currently, there are no vaccines or cures available and an efficient antiviral treatment is urgently needed to combat ZIKV infection. Herein, we targeted ZIKV NS2B-NS3 serine protease with short peptides to inhibit ZIKV replication in human hepatic cell line (WRL-68). The short peptide inhibitors were designed using Hyperchem 8.0.10 software. Docking energy and binding configuration were calculated using HADDOCK webserver. ZIKV NS2B-NS3 protease was produced as a recombinant single peptide in Escherichia coli and the protease activity was examined by measuring the cleavage of a fluorescent substrate in the presence of the peptides or aprotinin as a standard protease inhibitor. Computational analysis revealed that the short peptides, AYA2 and AYA9, exhibited lower docking energy to ZIKV protease than aprotinin. Both peptides also possessed lower half maximal inhibitory concentration (IC50), 30.9 and 22.1 µM respectively, against ZIKV protease activity when compared to aprotinin (35.4 µM). Interestingly, AYA2 and AYA9 exhibited minimal cytotoxic effects in WRL-68 cells and showed considerable inhibition against ZIKV replication in vitro at half maximal effective concentration (EC50) of 40.73?±?2.3 µM and 34.65?±?1.8 µM respectively. Fusion of these two peptides to MAP30 peptide substantially reduced the IC50 of ZIKV protease inhibition to 1.1 µM and inhibited ZIKV replication at EC50 of 0.5157?±?0.03 µM. In sum, we reported novel peptides that effectively inhibited ZIKV replication in vitro. This study represents a cost-effective strategy of developing peptide inhibitors by shortening the peptides and producing them in recombinant form.

  相似文献   

6.
Numerous studies have suggested that an effective Hepatitis C Virus (HCV) vaccine must induce strong cytotoxic and IFN-γ+ T cell responses targeting the non-structural region of the virus. Most importantly, these responses must be able to migrate into and remain functional within the liver, an organ known to cause T cell tolerance. Using three novel HCV DNA vaccines encoding non-structural proteins NS4B, NS5A and NS5B, we assessed the ability of peripheral immunization to induce functional intrahepatic immunity both in the presence and absence of cognate HCV antigen expression within the liver. We have shown that these constructs induced potent HCV-specific CD4+ and CD8+ T cell responses in the spleen of C57BL/6 mice and that these responses were detected within the liver following peripheral immunization. Additionally, using a transfection method to express HCV antigen within the liver, we showed that intrahepatic HCV-specific T cells remained highly functional within the liver and retained the ability to become highly activated as evidenced by upregulation of IFN-γ and clearance of HCV protein expressing hepatocytes. Taken together, these findings suggest that peripheral immunization can induce potent HCV-specific T cell responses able to traffic to and function within the tolerant environment of the liver.  相似文献   

7.
Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection.Here we demonstrate that artificial up-regulation of fatty acid biosynth...  相似文献   

8.
Over the last 2 decades, covalent inhibitors have gained much popularity and is living up to its reputation as a powerful tool in drug discovery. Covalent inhibitors possess many significant advantages including increased biochemical efficiency, prolonged duration and the ability to target shallow, solvent exposed substrate-binding domains. However, rapidly mounting concerns over the potential toxicity, highly reactive nature and general lack of selectivity have negatively impacted covalent inhibitor development. Recently, a great deal of emphasis by the pharmaceutical industry has been placed toward the development of novel approaches to alleviate the major challenges experienced through covalent inhibition. This has unexpectedly led to the emergence of “selective” covalent inhibitors. The purpose of this review is not only to provide an overview from literature but to introduce a technical guidance as to how to initiate a systematic “road map” for the design of selective covalent inhibitors which we believe may assist in the design and development of optimized potential selective covalent HCV NS3/4A viral protease inhibitors.  相似文献   

9.
We previously demonstrated that two closely spaced polyproline motifs, with the consensus sequence Pro-X-X-Pro-X-Lys/Arg, located between residues 343 to 356 of NS5A, mediated interactions with cellular SH3 domains. The N-terminal motif (termed PP2.1) is only conserved in genotype 1 isolates, whereas the C-terminal motif (PP2.2) is conserved throughout all hepatitis C virus (HCV) isolates, although this motif was shown to be dispensable for replication of the genotype 1b subgenomic replicon. In order to investigate the potential role of these motifs in the viral life cycle, we have undertaken a detailed mutagenic analysis of these proline residues in the context of both genotype 1b (FK5.1) or 2a subgenomic replicons and the genotype 2a infectious clone, JFH-1. We show that the PP2.2 motif is dispensable for RNA replication of all subgenomic replicons and, furthermore, is not required for virus production in JFH-1. In contrast, the PP2.1 motif is only required for genotype 1b RNA replication. Mutation of proline 346 within PP2.1 to alanine dramatically attenuated genotype 1b replicon replication in three distinct genetic backgrounds, but the corresponding proline 342 was not required for replication of the JFH-1 subgenomic replicon. However, the P342A mutation resulted in both a delay to virus release and a modest (up to 10-fold) reduction in virus production. These data point to critical roles for these proline residues at multiple stages in the HCV life cycle; however, they also caution against extrapolation of data from culture-adapted replicons to infectious virus.Hepatitis C virus (HCV) is an enveloped RNA virus which is estimated to infect some 123 million individuals (24). In the majority of cases the virus establishes a chronic infection that can ultimately result in liver fibrosis, cirrhosis, or hepatocellular carcinoma. Thus, there is great interest in elucidating the mechanisms of viral replication, with a view to developing new chemotherapeutic agents. Since 1999, use of the subgenomic replicon system has led to significant progress in the understanding of the mechanism of viral RNA replication. It has been demonstrated that the five nonstructural proteins—NS3, NS4A, NS4B, NS5A, and NS5B—are necessary and sufficient to replicate an RNA molecule containing the 5′ and 3′ untranslated regions (UTRs) of the viral genome. However, apart from the RNA-dependent RNA polymerase (NS5B), the precise details of the roles of each of the nonstructural proteins in the process of RNA replication remain undefined. One problem associated with the subgenomic replicon system is the observation that the replicon RNA undergoes culture adaptation in which, as a result of the error-prone nature of the polymerase, mutations that confer enhanced replicative capacity are selected for in culture. Importantly, it has been shown using the chimpanzee model that, once engineered back into an infectious clone of the virus, such mutations may be attenuating in vivo (5). Recently, the HCV field has been revolutionized by the development of a cell culture infectious system based on a genotype 2a clone derived from a patient with fulminant hepatitis: the JFH-1 clone (30). JFH-1 is also unique in that subgenomic replicons derived from this clone are able to replicate efficiently without culture adaptation. This observation, as well as the fact that full-length genomes of JFH-1 are able to coordinate the coupling of RNA replication to packaging and release of infectious virus particles in Huh7 cells, points to fundamental differences between the RNA replication machinery of JFH-1 and that of the genotype 1b culture-adapted replicons.The majority of mutations conferring culture adaptation map to the region coding for the NS5A protein. NS5A is a zinc-binding phosphoprotein that, as well as playing a critical role in RNA replication, also interacts with a plethora of cellular proteins (18). The protein has been demonstrated to consist of three domains separated by low-complexity sequences (LCS) (29). Of particular interest is the observation that within LCS2 (between domains II and III) (Fig. (Fig.1a),1a), NS5A contains two closely spaced polyproline motifs that are able to bind to the SH3 domains of Src-family tyrosine kinases (16), as well as other SH3 domain containing proteins (e.g., Grb2 and amphiphysin II/Bin1) (23, 25, 33). These motifs, which we have termed PP2.1 and PP2.2 (Fig. (Fig.1a),1a), conform to the consensus SH3 binding motif Pro-X-X-Pro-X-Arg/Lys, where X is any amino acid (21). Interestingly, although the C-terminal motif (PP2.2) is absolutely conserved in all HCV genotypes, we and others have shown that it is dispensable for HCV RNA replication because alanine substitution of three prolines in this motif (shown to abolish SH3 domain interactions [16]) within a culture-adapted subgenomic replicon had either no effect (19) or resulted in only a modest reduction in replicative capacity (23, 33). The N-terminal motif (PP2.1), however, is only conserved in genotype 1 isolates, although within this motif a proline at residue 346 in genotype 1b (342 in genotype 2a) is absolutely conserved throughout all genotypes, which suggests it has an important role in virus replication.Open in a separate windowFIG. 1.Polyproline motifs in NS5A. (a) Schematic of the structure of NS5A showing the endoplasmic reticulum-membrane associating amphipathic helix (gray box) (4), the position of the coordinated zinc ion, and the three domains with interlinking LCS (black boxes) (29). The lower part of this figure shows the amino acid sequence of the region from residues 343 to 356. These correspond to polyprotein residues 2315 to 2328 in the genotype 1b infectious clone J4 (31). Note that in JFH-1 the corresponding residues in the polyprotein are 2311 to 2325 (residues 339 to 352 within the NS5A sequence). The prolines and basic residues of the SH3 binding motifs (Pro-X-X-Pro-X-Arg/Lys) are in boldface. The accession numbers for the six sequences are as follows: 1a infectious clone H77 (AF009606), 1b infectious clone J4 (AF054247), FK5.1 culture-adapted subgenomic replicon (AJ242654) (13), Con1 isolate (AJ238799), 2a infectious clone JFH-1 (AB047639), and 3a isolate (D17763). (b) Schematic of mutants constructed in the present study. The wild-type FK5.1 sequence is on the top line, residues mutated to alanine indicated by A in the subsequent lines, hyphens indicate unchanged residues.To shed more light on the role of these proline residues in the viral life cycle we have undertaken a mutagenic analysis both in the context of genotype 1b or 2a subgenomic replicons and the cell culture infectious JFH-1 clone. Our results point to key roles of these prolines in multiple stages of virus replication but highlight a surprising discrepancy between the requirements in the two systems.  相似文献   

10.
Based on the symmetrical bidentate structure of the NS5A inhibitor BMS-790052, a series of new monodentate molecules were designed. The synthesis of 36 new non-dimeric NS5A inhibitors is reported along with their ability to block HCV replication in an HCV 1b replicon system. Among them compound 5a showed picomolar range activity along with an excellent selectivity index (SI > 90,000).  相似文献   

11.

Background

Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated.

Results

Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material.

Conclusion

Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents.  相似文献   

12.
Hepatitis C virus (HCV) frequently establishes persistent infections that can develop into severe liver disease. The HCV NS3/4A serine protease is not only essential for viral replication but also cleaves multiple cellular targets that block downstream interferon activation. Therefore, NS3/4A is an ideal target for the development of anti-HCV drugs and inhibitors. In the current study, we generated a novel NS3/4A/Lap/LC-1 triple-transgenic mouse model that can be used to evaluate and screen NS3/4A protease inhibitors. The NS3/4A protease could be conditionally inducibly expressed in the livers of the triple-transgenic mice using a dual Tet-On and Cre/loxP system. In this system, doxycycline (Dox) induction resulted in the secretion of Gaussia luciferase (Gluc) into the blood, and this secretion was dependent on NS3/4A protease-mediated cleavage at the 4B5A junction. Accordingly, NS3/4A protease activity could be quickly assessed in real time simply by monitoring Gluc activity in plasma. The results from such monitoring showed a 70-fold increase in Gluc activity levels in plasma samples collected from the triple-transgenic mice after Dox induction. Additionally, this enhanced plasma Gluc activity was well correlated with the induction of NS3/4A protease expression in the liver. Following oral administration of the commercial NS3/4A-specific inhibitors telaprevir and boceprevir, plasma Gluc activity was reduced by 50% and 65%, respectively. Overall, our novel transgenic mouse model offers a rapid real-time method to evaluate and screen potential NS3/4A protease inhibitors.  相似文献   

13.
14.
Zhang C  Cai Z  Kim YC  Kumar R  Yuan F  Shi PY  Kao C  Luo G 《Journal of virology》2005,79(14):8687-8697
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses multiple enzyme activities. The N-terminal one-third of NS3 primarily functions as a serine protease, while the remaining two-thirds of NS3 serve as a helicase and nucleoside triphosphatase. Whether the multiple enzyme activities of NS3 are functionally interdependent and/or modulated by other viral NS proteins remains unclear. We performed biochemical studies to examine the functional interdependence of the NS3 protease and helicase domains and the modulation of NS3 helicase by NS5B, an RNA-dependent RNA polymerase (RdRp). We found that the NS3 protease domain of the full-length NS3 (NS3FL) enhances the NS3 helicase activity. Additionally, HCV RdRp stimulates the NS3FL helicase activity by more than sevenfold. However, the helicase activity of the NS3 helicase domain was unaffected by HCV RdRp. Glutathione S-transferase pull-down as well as fluorescence anisotropy results revealed that the NS3 protease domain is required for specific NS3 and NS5B interaction. These findings suggest that HCV RdRp regulates the functions of NS3 during HCV replication. In contrast, NS3FL does not increase NS5B RdRp activity in vitro, which is contrary to a previously published report that the HCV NS3 enhances NS5B RdRp activity.  相似文献   

15.
Hepatitis C virus (HCV) is the main agent of acute and chronic liver diseases leading to cirrhosis and hepatocellular carcinoma. The current standard therapy has limited efficacy and serious side effects. Thus, the development of alternate therapies is of tremendous importance. HCV NS5A (nonstructural 5A protein) is a pleiotropic protein with key roles in HCV replication and cellular signaling pathways. Here we demonstrate that NS5A dimerization occurs through Domain I (amino acids 1-240). This interaction is not mediated by nucleic acids because benzonase, RNase, and DNase treatments do not prevent NS5A-NS5A interactions. Importantly, DTT abrogates NS5A-NS5A interactions but does not affect NS5A-cyclophilin A interactions. Other reducing agents such as tris(2-carboxyethyl)phosphine and 2-mercaptoethanol also abrogate NS5A-NS5A interactions, implying that disulfide bridges may play a role in this interaction. Cyclophilin inhibitors, cyclosporine A, and alisporivir and NS5A inhibitor BMS-790052 do not block NS5A dimerization, suggesting that their antiviral effects do not involve the disruption of NS5A-NS5A interactions. Four cysteines, Cys-39, Cys-57, Cys-59, and Cys-80, are critical for dimerization. Interestingly, the four cysteines have been proposed to form a zinc-binding motif. Supporting this notion, NS5A dimerization is greatly facilitated by Zn(2+) but not by Mg(2+) or Mn(2+). Importantly, the four cysteines are vital not only for viral replication but also critical for NS5A binding to RNA, revealing a correlation between NS5A dimerization, RNA binding, and HCV replication. Altogether our data suggest that NS5A-NS5A dimerization and/or multimerization could represent a novel target for the development of HCV therapies.  相似文献   

16.
Judicious modifications to the structure of the previously reported HCV NS5A inhibitor 1, resulted in more potent anti-HCV compounds with similar and in some cases improved toxicity profiles. The synthesis of 19 new NS5A inhibitors is reported along with their ability to block HCV replication in an HCV 1b replicon system. For the most potent compounds chemical stability, stability in liver microsomes and inhibition of relevant CYP450 enzymes is also presented.  相似文献   

17.
《Journal of molecular biology》2019,431(12):2354-2368
A variety of amino acid substitutions in the NS3-4A protease of the hepatitis C virus lead to protease inhibitor (PI) resistance. Many of these significantly impair the replication fitness of the resistant variants in a genotype- and subtype-dependent manner, a critical factor in determining the probability with which resistant variants will persist. However, the underlying molecular mechanisms are unknown. Here, we present a novel residue-interaction network approach to determine how near-neighbor interactions of PI resistance mutations in NS3-4A can impact protease functional sites dependent on their genomic background. We constructed subtype-specific consensus residue networks for subtypes 1a and 1b from protease structure ensembles combined with biological properties of protein residues and evolutionary amino acid conservation. By applying local and global network topology analysis and visual exploration, we characterize PI resistance-associated sites and outline differences in near-neighbor interactions. We find local residue-interaction patterns and features at protease functional sites that are subtype specific. The noncovalent bonding patterns indicate higher fitness costs conferred by PI resistance mutations in a subtype 1b genomic background and explain the prevalence of Q80K and R155K in subtype 1a. Based on local residue interactions, we predict a subtype-specific role for the protease residue NS3–Q80 in molecular mechanisms related to the assembly of infectious virus particles that is supported by experimental data on the capacity of Q80K variants to replicate and produce infectious virus in subtype 1a and 1b cell culture.  相似文献   

18.
Intrinsically disordered proteins (IDPs) perform their physiological role without possessing a well-defined three-dimensional structure. Still, residual structure and conformational dynamics of IDPs are crucial for the mechanisms underlying their functions. For example, regions of transient secondary structure are often involved in molecular recognition, with the structure being stabilized (or not) upon binding. Long-range interactions, on the other hand, determine the hydrodynamic radius of the IDP, and thus the distance over which the protein can catch binding partners via so-called fly-casting mechanisms. The modulation of long-range interactions also presents a convenient way of fine-tuning the protein’s interaction network, by making binding sites more or less accessible. Here we studied, mainly by nuclear magnetic resonance spectroscopy, residual secondary structure and long-range interactions in nonstructural protein 5A (NS5A) from hepatitis C virus (HCV), a typical viral IDP with multiple functions during the viral life cycle. NS5A comprises an N-terminal folded domain, followed by a large (∼250-residue) disordered C-terminal part. Comparing nuclear magnetic resonance spectra of full-length NS5A with those of a protein construct composed of only the C-terminal residues 191–447 (NS5A-D2D3) allowed us to conclude that there is no significant interaction between the globular and disordered parts of NS5A. NS5A-D2D3, despite its overall high flexibility, shows a large extent of local residual (α-helical and β-turn) structure, as well as a network of electrostatic long-range interactions. Furthermore, we could demonstrate that these long-range interactions become modulated upon binding to the host protein Bin1, as well as after NS5A phosphorylation by CK2. As the charged peptide regions involved in these interactions are well conserved among the different HCV genotypes, these transient long-range interactions may be important for some of the functions of NS5A over the course of the HCV life cycle.  相似文献   

19.
The N-terminal domain of the hepatitis C virus (HCV) polyprotein containing the NS3 protease (residues 1027 to 1206) was expressed in Escherichia coli as a soluble protein under the control of the T7 promoter. The enzyme has been purified to homogeneity with cation exchange (SP-Sepharose HR) and heparin affinity chromatography in the absence of any detergent. The purified enzyme preparation was soluble and remained stable in solution for several weeks at 4°C. The proteolytic activity of the purified enzyme was examined, also in the absence of detergents, using a peptide mimicking the NS4A/4B cleavage site of the HCV polyprotein. Hydrolysis of this substrate at the expected Cys–Ala scissile bond was catalyzed by the recombinant protease with a pseudo second-order rate constant (kcat/KM) of 205 and 196,000 M−1 s−1, respectively, in the absence and presence of a central hydrophobic region (sequence represented by residues 21 to 34) of the NS4A protein. The rate constant in the presence of NS4A peptide cofactor was two orders of magnitude greater than reported previously for the NS3 protease domain. A significantly higher activity of the NS3 protease–NS4A cofactor complex was also observed with a substrate mimicking the NS4B/5A site (kcat/KM of 5180 ± 670 M−1 s−1). Finally, the optimal formation of a complex between the NS3 protease domain and the cofactor NS4A was critical for the high proteolytic activity observed.  相似文献   

20.
目的:为了发展新一代HCV检测试剂盒,使包被的NS3蛋白能提高其检测的精确度与准确度.方法:通过生物信息学方法选定目标蛋白为HCV1263a.a~1583a.a,应用PCR方法克隆出编码此部分NS3蛋白的DNA序列,连接到表达载体pQE30构建重组子pQNS3,转化工程菌株JM109后诱导表达,表达产物通过Western-blot实验证实,用Ni-NTA-Superflow亲和层析柱纯化,采用ELISA方法检测纯化的蛋白在免疫检测中的应用.结果:工程菌株在IPIG诱导下表达出N端含6个组氨酸的NS3融合蛋白,分子量约为36kDa,利用纯化的目标蛋白对40份HCV抗体阳性参考品,蛋白检测的符合率为77.5%(31/40);对40份阴性参考品,检测符合率为97.5%(39/40).结论:表达的NS3融合蛋白,具有很好的应用价值,可以应用于新一代HCV检测试剂盒以及对NS3蛋白功能的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号