首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Theories of beauty were evaluated by requiring subjects to “evolve” a beautiful female face using a Genetic Algorithm. In this procedure, a computer program generated a small population of faces (first generation of phenotypes) from a set of random binary strings (genotypes). Genotypes specified the shapes and soft tissue anthropometrics of facial features. Each of the first generation of faces was rated by a subject (relative fitness measure) for beauty. The fittest genotypes then bred in proportion to their fitness, with crossover and mutation of the binary strings, to produce offspring which were again rated by the subject. This process continued until the most beautiful face, for that subject, was evolved. Forty Caucasian subjects (20 M, 20 F) were required to evolve their idealized beautiful female face using this procedure. The features and soft tissue anthropometrics of their final composites were compared to population norms. Also, the final composites, and different faces generated from the same data base, were rated for beauty by independent judges. The results support the conclusion that the concept of facial beauty is the result of sexual selection, and a beautiful female face has features and proportions indicative on high fertility.  相似文献   

2.
The discovery in invertebrates of ciliary photoreceptor cells and ciliary (c)-opsins established that at least two of the three elements that characterize the vertebrate photoreceptor system were already present before vertebrate evolution. However, the origin of the third element, a series of biochemical reactions known as the "retinoid cycle," remained uncertain. To understand the evolution of the retinoid cycle, I have searched for the genetic machinery of the cycle in invertebrate genomes, with special emphasis on the cephalochordate amphioxus. Amphioxus is closely related to vertebrates, has a fairly prototypical genome, and possesses ciliary photoreceptor cells and c-opsins. Phylogenetic and structural analyses of the amphioxus sequences related with the vertebrate machinery do not support a function of amphioxus proteins in chromophore regeneration but suggest that the genetic machinery of the retinoid cycle arose in vertebrates due to duplications of ancestral nonvisual genes. These results favor the hypothesis that the retinoid cycle machinery was a functional innovation of the primitive vertebrate eye.  相似文献   

3.
The site (intra- vs. extraocular) of the circadian clock driving an ocular melatonin rhythm in Japanese quail was investigated by alternately covering the left and right eyes of individual quail, otherwise held in constant light (LL), for 12-hr periods. This procedure exposed each eye to a light-dark (LD) 12:12 light cycle 180 degrees (12 hr) out of phase with the LD 12:12 light cycle experienced by the other eye. This protocol entrained the melatonin rhythm in the left eye of quail 180 degrees out of phase with the rhythm expressed in the right eye. These results are compatible with the hypothesis that an independent light-entrainable circadian pacemaker resides in each eye; they are incompatible with the hypothesis that a single (or functionally single) extraocular pacemaker drives the ocular melatonin rhythm in both eyes. However, the results are also compatible with a model in which two independent extraocular circadian pacemakers, each with an exclusive photic input from one eye, drive the ocular melatonin rhythm.  相似文献   

4.
The gaze-signaling hypothesis and the related cooperative-eye hypothesis posit that humans have evolved special external eye morphology, including exposed white sclera (the white of the eye), to enhance the visibility of eye-gaze direction and thereby facilitate conspecific communication through joint-attentional interaction and ostensive communication. However, recent quantitative studies questioned these hypotheses based on new findings that certain features of human eyes are not necessarily unique among great ape species. Accordingly, there is currently a heated debate over whether external eye features of humans are distinct from those of other apes and how such distinguishable features contribute to the visibility of eye-gaze direction. The present study leveraged updated image analysis techniques to test the uniqueness of human eye features in facial images of great apes. Although many eye features were similar between humans and other great apes, a key difference was that humans have uniformly white sclera which creates clear visibility of both the eye outline and iris—the two essential features contributing to the visibility of eye-gaze direction. We then tested the robustness of the visibility of these features against visual noise, such as shading and distancing, and found that both eye features remain detectable in the human eye, while eye outline becomes barely detectable in other species under these visually challenging conditions. Overall, we identified that humans have unique external eye morphology among other great apes, which ensures the robustness of eye-gaze signals in various visual conditions. Our results support and also critically update the central premises of the gaze-signaling hypothesis.  相似文献   

5.
Interaction between the execution process of eye movement and that of hand movement must be indispensable for eye–hand coordination. The present study investigated corticospinal excitability in the hand muscles during the premotor processes of eye and/or hand movement to elucidate interaction between these processes. Healthy humans performed a precued reaction task of eye and/or finger movement and motor-evoked potentials in the hand muscles were evoked in the reaction time. Leftward eye movement suppressed corticospinal excitability in the right abductor digiti minimi muscle only when little finger abduction was simultaneously executed. Corticospinal excitability in the first dorsal interosseous muscle was not suppressed by eye movement regardless of whether or not it was accompanied by finger movement. Suppression of corticospinal excitability in the hand muscles induced by eye movement in the premotor period depends on the direction of eye movement, the muscle tested, and the premotor process of the tested muscle. The suppression may reflect interaction between the motor process of eye movement and that of hand movement particularly active during eye–hand coordination tasks during which both processes proceed.  相似文献   

6.
Colorful displays have evolved in multiple plant and animal species as signals to mutualists, antagonists, competitors, mates, and other potential receivers. Studies of color have long relied on subjective classifications of color by human observers. However, humans have a limited ability to perceive color compared to other animals, and human biological, cultural, and environmental variables can influence color perception. Here, we test the consistency of human color classification using fruit color as a model system. We used reflectance data of 67 tropical fruits and surveyed 786 participants to assess the degree to which (a) participants of different cultural and linguistic backgrounds agree on color classification of fruits; and (b) human classification to a discrete set of commonly used colors (e.g., red, blue, green) corresponds to natural clusters based on light reflectance measures processed through visual systems of other animals. We find that individual humans tend to agree on the colors they attribute to fruits across language groups. However, these colors do not correspond to clearly discernible clusters in di‐ or tetrachromatic visual systems. These results indicate that subjective color categorizations tend to be consistent among observers and can be used for large synthetic studies, but also that they do not fully reflect natural categories that are relevant to animal observers.  相似文献   

7.
The compound eyes of the wingless adults of the Madagascar 'hissing cockroach' Gromphadorhinaportentosa Sachum, 1853 were examined by light and electron microscopy. Each eye contains 2 400-2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally-fused, tiered rhabdom. The distal end of the latter is funnel-shaped and accommodates the proximal end of the cone in its midst, Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right-angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3-4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G. portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of microvillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e-vector discrimination in the environment of down-welling light that reaches the forest floor.  相似文献   

8.
Moiseeva  I. N.  Stein  A. A.  Lyubimov  G. A. 《Biophysics》2016,61(6):1011-1018
Biophysics - The procedure of differential tonometry by the Schiøtz tonometer is modeled using a two-component model of the eyeball in which the cornea is represented by a momentless...  相似文献   

9.
The Drosophila genome contains at least three loci for the Na,K-ATPase β-subunit; however, only the protein products of nrv1 and nrv2 have been characterized hitherto. Here, we provide evidence that nrv3 also encodes for a functional Na,K-ATPase β-subunit, as its protein product co-precipitates with the Na,K-ATPase α-subunit. Nrv3 expression in adult flies is restricted to the nervous system in which Nrv3 is enriched in selective types of sensory cells. Because Nrv3 expression is especially prominent in the compound eye, we have analyzed the subcellular and developmental distribution of Nrv3 within the visual cells and related this distribution to those of the α-subunit and of the β-subunits Nrv1 and Nrv2. Prospective visual cells express Nrv2 in the third larval instar stage and during the first half of pupal development. During the last third of pupal life, Nrv3 gradually replaces Nrv2 as the Na,K-ATPase β-subunit in the photoreceptor cells. Adult photoreceptors express Nrv3 as their major β-subunit; the visual cells R1–R6 co-express Nrv2 at a low level, whereas R7 and R8 co-express Nrv1. Notably, β-subunits do not co-distribute exactly with the α-subunit at some developmental stages, supporting the concept that the α-subunit and β-subunit can exist in the plasma membrane without being engaged in α/β heterodimers. The non-visual cells within the compound eye express almost exclusively Nrv2, which segregates together with the α-subunit to septate junctions throughout development.  相似文献   

10.
 The Golgi apparatus of epididymal principal cells shares many structural features with other cell types. Saccular regions are arranged in a cis-Golgi network, eight flattened saccules, and several trans-Golgi networks (TGNs). Dilated tubules form intersaccular connecting regions which joint together saccules at the same or different levels between adjacent stacks. Wells exist as large perforations in register with the four cis-most saccules and serve as areas of vesicular interactions. TGNs are variable and can appear to peel off the stack or to be detached from it in the form of an anastomotic tubular network with pale dilated areas corresponding to prosecretory granules connected by short narrow bridges. Elongated or discoid dilated cisternae of endoplasmic reticulum (ER) (sparsely granulated) lie over the cis face of the stack, from which they are separated by an intermediate compartment filled with vesicles and tubules. The ER is also closely juxtaposed to the TGNs and the eighth saccule but interconnections are never seen between them. Vesicles of the COP variety reside at all levels of the stack and appear to bud off the cis-located ER and the edges of the saccules, while clathrin-coated vesicles appear mainly on the trans face of the stack and next to lysosomes. In the supranuclear cytoplasm, clusters of vesicles and tubules, at times budding off enveloping ER, appear to radiate toward the Golgi stacks where they fuse with cis Golgi elements. Taken together, these observations suggest dynamic functions and interactions for the various Golgi elements, associated vesicles, ER, and vesicular tubular clusters. Accepted: 29 January 1998  相似文献   

11.
The ‘division of labour’ model of eye evolution is elaborated here. We propose that the evolution of complex, multicellular animal eyes started from a single, multi-functional cell type that existed in metazoan ancestors. This ancient cell type had at least three functions: light detection via a photoreceptive organelle, light shading by means of pigment granules and steering through locomotor cilia. Located around the circumference of swimming ciliated zooplankton larvae, these ancient cells were able to mediate phototaxis in the absence of a nervous system. This precursor then diversified, by cell-type functional segregation, into sister cell types that specialized in different subfunctions, evolving into separate photoreceptor cells, shading pigment cells (SPCs) or ciliated locomotor cells. Photoreceptor sensory cells and ciliated locomotor cells remained interconnected by newly evolving axons, giving rise to an early axonal circuit. In some evolutionary lines, residual functions prevailed in the specialized cell types that mirror the ancient multi-functionality, for instance, SPCs expressing an opsin as well as possessing rhabdomer-like microvilli, vestigial cilia and an axon. Functional segregation of cell types in eye evolution also explains the emergence of more elaborate photosensory–motor axonal circuits, with interneurons relaying the visual information.  相似文献   

12.
Whether a stimulus is perceived is suggested to depend on the amount or strength of the sensory signal. This idea has received support from a recent study which found that, when neural activation in the frontal eye fields was boosted by magnetic stimulation, the observers' detection performance on a visual task improved.  相似文献   

13.
14.
We examined the fine structure of dorsal rim ommatidia of the compound eye of Pararge aegeria (Lepidoptera: Satyridae) and compared them with ommatidia of the large dorsal region described by Riesenberg (1983 Diploma, University of Munich). 1. The ommatidia of the dorsal rim show morphological specializations known to be typical of the perception of polarized light: (a) the dumb-bell-shaped rhabdoms contain linearly aligned rhabdomeres with only 2 orthogonally arranged microvilli orientations. The rhabdoms are composed of the rhabdomeres of 9 receptor cells, 8 of which are radially arranged. The rhabdomeres of receptor cells VI and V5, as well as D2, D4, D6 and D8 are dorsoventrally aligned, whereas the rhabdomeres of the cells H3 and H7 are perpendicular to them. The rhabdomere of the bilobed 9th retinula cell lies basally and is dorsoventrally aligned, where retinula cell VI and V5 are already axonal. (b) There is no rhabdomeric twist, and (c) the rhabdoms are rather short. 2. However, in the ommatidia of the large dorsal region, only 2 retinula cells (H3 and H7) are suitable for perception of polarized light. 3. Lucifer yellow and horse radish peroxidase were used as tracers to visualize the projections of retinula cell axons of the dorsal rim area and the large dorsal region into the optic neuropils (lamina and medulla). Two receptors (VI and V5) from both the dorsal rim area and the large dorsal region, have long visual fibres projecting into the medulla. The 7 remaining retinula cells of both eye regions, including those that meet the structural requirements for detection of polarized light in the large dorsal region, terminate in the lamina (short visual fibres). These results provide a starting point for further studies to reveal the possible neuronal pathways by which polarized light may be processed.  相似文献   

15.
A. V. Krivandin 《Biophysics》2009,54(4):448-449
Heat-induced structural transitions of crystallins in the eye lens tissue have been studied by small-angle X-ray scattering. It is shown that a short-time (~1 min) incubation of the bovine lens tissue at a temperature of ~60°C leads to a pronounced shift of the small-angle x-ray diffraction maximum due to the short-range order of α-crystallin oligomers. This shift indicates an increase in the molecular mass of α-crystallin oligomers. The results are evidence that, in the native surrounding and at the natural concentration of α-crystallin, heat-induced transition of α-crystallin quaternary structure takes place. Earlier, this transition of α-crystallin has been observed only in solutions and gels of this protein. The results confirm the identity of α-crystallin properties in vitro and in vivo.  相似文献   

16.
Crystallins are very abundant structural proteins of the lens and are also expressed in other tissues. We have previously reported a spontaneous mutation in the rat βA3/A1-crystallin gene, termed Nuc1, which has a novel, complex, ocular phenotype. The current study was undertaken to compare the expression pattern of this gene during eye development in wild type and Nuc1 rats by in situ hybridization (ISH) and immunohistochemistry (IHC). βA3/A1-crystallin expression was first detected in the eyes of both wild type and Nuc1 rats at embryonic (E) day 12.5 in the posterior portion of the lens vesicle, and remained limited to the lens fibers throughout fetal life. After birth, βA3/A1-crystallin expression was also detected in the neural retina (specifically in the astrocytes and ganglion cells) and in the retinal pigmented epithelium (RPE). This suggested that βA3/A1-crystallin is not only a structural protein of the lens, but has cellular function(s) in other ocular tissues. In summary, expression of βA3/A1-crystallin is controlled differentially in various eye tissues with lens being the site of greatest expression. Similar staining patterns, detected by ISH and IHC, in wild type and Nuc1 animals suggest that functional differences in the protein, rather than changes in mRNA/protein level of expression, likely account for developmental abnormalities in Nuc1.  相似文献   

17.
There are over 1.9 million eye injuries per year in the United States, with blunt impacts the cause of approximately one-half of all civilian eye injuries. No previous experimental studies have investigated the effects of the extraocular muscles on the impact response of the eye. A spring-powered blunt impactor was used to determine the effects that the extraocular muscles have on the force–deflection and injury response of the eye to blunt trauma. A total of 10 dynamic impact tests were performed at 8.2±0.1 m/s on five human cadaver heads. With the extraocular muscles left intact, the average peak force was found to be 271±51 N at 7.5±0.9 mm posterior translation; with the muscles transected, the average peak force was 268±26 N at 7.6±1.3 mm of posterior translation. From the data available from this study, the peak impact force and overall amount of translation during the impact are not affected by the extraocular muscles. Additionally, from the data presented in this study, the eyes with the extraocular muscles left intact do not rupture with a different injury pattern or display an increased risk for rupture than the eyes with the extraocular muscles transected. Therefore, it is believed that the effect of the extraocular muscles is not sufficient to drastically alter the response of the eye under dynamic impact. This information is useful to characterize the boundary conditions that dictate the eye response from blunt impact and can be used to define the biofidelity requirements for the impact response of synthetic eyes.  相似文献   

18.
19.
PURPOSE: To investigate the potential in vivo influence of different topical glaucoma medications on the diameter of the retinal arterioles of healthy volunteers and glaucoma patients. METHODS: The diameter of one pre-selected retinal arteriole per eye was measured using the Retinal Vessel Analyser (RVA), an instrument developed for non-invasive clinical measurement of the diameter of the main retinal vessels. The instrument contains a video system, and the integrated software recognises the boundaries of the retinal vessels by detecting their light-transmission profile. The vessel diameter (in arbitrary units) is plotted against time (seconds) on a separate display screen. In Study I the vessel diameter was measured in 12 eyes of six healthy volunteers (age 21-26 years, mean age 24.0 years) on six occasions each separated by 14 days. In a double-masked fashion, each subject's right eye was treated with one of 5 glaucoma medications (brinzolamide 1%, timolol 0.5%, betaxolol 0.5%, brimonidine 0.2% or latanoprost 0.005%) and the left eye always received balanced salt solution. In Study II, one randomly selected eye of 16 patients (age 50-79 years, mean age 65.2 years) suffering from primary open-angle glaucoma controlled with topical monotherapy was investigated, in an unmasked fashion. Four patients were on betaxolol 0.5% treatment, six subjects were receiving non-selective topical beta receptor blockers and six subjects were being treated with once daily latanoprost 0.005%. RESULTS: The coefficient of variation for the arteriole diameter in the healthy volunteers was less than 12% in each case. No significant post-treatment change of the diameter of the pre-selected arteriole was found for any topical medication investigated, either in the healthy volunteers (Study I) or in the patients suffering from glaucoma (Study II) (p>0.05, paired t-test). In addition, in Study I no difference was observed in the alteration of the arteriole diameter between the baseline and the hour 2 measurements when the values from the drug-treated and placebo treated eyes were compared (p>0.05, two-way ANOVA). CONCLUSION: In the present investigations it was not possible to detect any statistically meaningful change of the arteriole diameter at two hours after the instillation of any of several topical antiglaucoma drugs widely used in clinical practice. Further investigations are necessary to clarify whether the lack of observed change is due to the lack of retinal vascular effects of the drugs investigated, or is due to an inability of the RVA instrument in practice to detect alterations between time-points separated by several hours.  相似文献   

20.
Thyroid associated ophthalmopathy, or thyroid eye disease (TED), is a complex inflammatory disorder of the eye that, as its name implies, is usually associated with thyroid disease. Clinical observation supports the existence of three main TED subtypes, namely ocular myopathy, congestive myopathy, and mixed congestive and myopathic ophthalmopathy. Although the precise pathophysiology of TED remains unclear, it is likely to reflect an autoimmune reaction involving sensitised T lymphocytes and autoantibodies directed against a specific orbital or thyroid-and-orbital shared antigen(s). One well-studied candidate in this immune reaction is the thyroid-stimulating hormone receptor (TSHR), which is also expressed in the orbital fibroblast and preadipocyte. Most patients with ophthalmopathy have associated Graves' disease, 10% have Hashimoto's thyroiditis in which the eye changes are often mild and expressed mainly as upper eyelid retraction (UER), and 10% have no apparent associated thyroid disease - so-called "euthyroid Graves' disease". Ophthalmopathy can also occur in some patients with transient thyroiditis, thyroid cancer, and Graves' disease many years after treatment of the hyperthyroidism - situations where TSHR antibodies are not expected to be present, suggesting that the relationship between TSHR antibodies and the eye disorder has not been established for all cases. In our studies of TED we have investigated the nature and significance of antibodies targeting other eye muscle and orbital connective tissue (OCT) antigens, in particular the calcium binding protein calsequestrin (CASQ1) and the orbital fibroblast membrane antigen collagen XIII. Our working hypotheses for the pathogenesis of TED are: i) the initial reaction in the orbit is antibody and T lymphocyte targeting of the TSHR in the OCT compartment, and ii) the associated extra ocular and upper eyelid muscle inflammation reflects either autoimmunity against primary skeletal muscle antigens such as CASQ1 or a secondary, non specific effect of the OCT reactions as proposed by the main proponents of the "TSHR hypothesis". Here, we review the evidence that autoimmunity against the TSHR expressed in the orbit can be implicated in the development of all cases of TED. Although there is a close general correlation between ophthalmopathy and TSHR antibodies there are many exceptions, suggesting that the continued study of the possible role of autoimmunity against calsequestrin and collagen XIII is justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号