首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.  相似文献   

2.
Nitric oxide (NO) plays a role in the pathophysiology of spinal cord injury (SCI). NO is produced by three types of nitric oxide synthase (NOS) enzymes: The constitutive Ca2+/calmodulin-dependent neuronal NOS (nNOS) and endothelial NOS (eNOS) isoforms, and the inducible calcium-independent isoform (iNOS). During the early stages of SCI, nNOS and eNOS produce significant amounts of NO, therefore, the regulation of their activity and expression may participate in the damage after SCI. In the present study, we used Cyclosporin-A (CsA) to further substantiate the role of Ca-dependent NOS in neural responses associated to SCI. Female Wistar rats were subjected to SCI by contusion, and killed 4 h after lesion. Results showed an increase in the activity of constitutive NOS (cNOS) after lesion, inhibited by CsA (2.5 mg/kg i.p.). Western blot assays showed an increased expression of both nNOS and eNOS after trauma, also antagonized by CsA administration.  相似文献   

3.
The effects of arginine on nitric oxide synthase (NOS) activity and NO production were studied in pulmonary artery endothelial cells (PAEC). Incubation of PAEC with 0–100 μM arginine increased NO production, detected as nitrite in the culture medium, in a dose-dependent manner. In contrast, incubation with concentrations of arginine in excess of 100 μM resulted in a reversible dose-dependent inhibition of NO production, even though intracellular arginine content increased in these cells. The NOS enzyme kinetics were studied in a total membrane preparation and in purified NOS protein and revealed that theKmof arginine as a substrate for NOS is 3–5 μM, theVmaxoccurred at 100 μM arginine, and substrate inhibition occurred at >100 μM arginine. Oxyhemoglobin, carboxy-PTIO, catalase, SOD, citrulline, hydroxyarginine, and -arginine did not change NOS kinetics. These results indicate that substrate inhibition of eNOS exists in porcine PAEC in vitro.  相似文献   

4.
一氧化氮是重要的信使分子,在生物体内参与众多生理及病理过程。生物体内存在着复杂的一氧化氮合酶活性调控机制以精确调控一氧化氮的生成。在神经系统中,一氧化氮主要由神经型一氧化氮合酶催化生成。神经型一氧化氮合酶的活性主要受到翻译后水平上钙离子和钙调蛋白的调控,其调控方式包括二聚化、多位点的磷酸化和去磷酸化,以及主要由PDZ结构域介导的蛋白质-蛋白质相互作用。一氧化氮本身对其合酶的活性具有负反馈调控作用。近年来的研究提示,细胞质膜上的脂筏微区在神经性一氧化氮合酶的活性调控中也起到重要的调节作用。  相似文献   

5.
Induction of Nitric Oxide Synthase in Glial Cells   总被引:28,自引:0,他引:28  
Primary astrocyte cultures, C6 glioma cells, and N18 neuroblastoma cells were assayed for nitric oxide synthase (NOS) activity with a bioassay of cyclic GMP production in RFL-6 fibroblasts. Treatment of astrocyte cultures for 16-18 h with lipopolysaccharide (LPS) induced NOS-like activity that was L-arginine and NADPH dependent, Ca2+ independent, and potentiated by superoxide dismutase. Induction was evident after 4 h, was dependent on the dose of LPS, and required protein synthesis. Treatment of astrocyte cultures with leucine methyl ester reduced microglial cell contamination from 7 to 1%, with a loss of 44% of NOS-like activity. C6 cells treated with LPS also showed Ca(2+)-independent and L-arginine-dependent NOS-like activity. N18 cells demonstrated constitutive Ca(2+)-dependent NOS-like activity that was not enhanced by LPS induction. These data indicate that NOS-like activity can be induced in microglia, astrocytes, and a related glioma cell line as it can in numerous other cell types, but not in neuron-like N18 cells.  相似文献   

6.
Nitric Oxide Synthase Activity in the Molluscan CNS   总被引:6,自引:0,他引:6  
Abstract: Putative nitric oxide synthase (NOS) activity was assayed in molluscan CNS through histochemical localization of NADPH-diaphorase and through measurement of l -arginine/ l -citrulline conversion. Several hundreds of NADPH-dependent diaphorase-positive neurons stained consistently darkly in the nervous system of the predatory opisthobranch Pleurobranchaea californica , whereas stained neurons were relatively sparse and/or light in the other opisthobranchs ( Philine, Aplysia, Tritonia, Flabellina, Cadlina, Armina, Coriphella , and Doriopsilla sp.) and cephalopods ( Sepia and Rossia sp.). l -Arginine/ l -citrulline conversion was β-NADPH dependent, insensitive to removal of Ca2+, inhibited by the calmodulin blocker trifluoperazine, and inhibited by the competitive NOS inhibitor N -nitro- l -arginine methyl ester ( l -NAME) but not d -NAME. Inhibitors of arginase [ l -valine and (+)- S -2-amino-5-iodoacetamidopentanoic acid)] did not affect l -citrulline production in the CNS. NOS activity was largely associated with the particulate fraction and appeared to be a novel, constitutive Ca2+-independent isoform. Enzymatic conversion of l -arginine/ l -citrulline in Pleurobranchaea and Aplysia CNS was 4.0 and 9.8%, respectively, of that of rat cerebellum. l -Citrulline formation in gill and muscle of Pleurobranchaea was not significant. The localization of relatively high NOS activity in neuron somata in the CNS of Pleurobranchaea is markedly different from the other opisthobranchs, all of which are grazers. Potentially, this is related to the animal's opportunistic predatory lifestyle.  相似文献   

7.
8.
Nitric Oxide Synthase Activity Endogenously Modulates NMDA Receptors   总被引:7,自引:0,他引:7  
Abstract: We tested the possibility that endogenous nitric oxide synthase activity regulated NMDA receptors in primary cultured striatal neurons. We monitored NMDA-induced increase in intra-cellular Ca2+ levels with fura-2 ratio imaging, while nitric oxide synthase activity was either increased with l -arginihe (the natural substrate of nitric oxide synthase) or inhibited using nitro- l -arginine (a specific inhibitor of nitric oxide synthase). We found that the NMDA receptor effect was slowly but strongly diminished after an l -arginine (1 m M , 15 min) treatment ( l -arginine preincubation reduced the 100 μM NMDA-induced maximal effect by 30–50%). The l -arginine blockade of NMDA receptors was long-lasting but could be partially reversed by hemoglobin (100 μM , 10 min), which binds nitric oxide. This was not observed when the neurons were treated with l -arginine together with nitro- l -arginine. Our data strongly suggest that physiological nitric oxide synthase activity could regulate NMDA receptors.  相似文献   

9.

Background

The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation.

Methods and Results

Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2 -). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2 - production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species.

Conclusions

The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.  相似文献   

10.
Fo Shou San (FSS) is an ancient herbal decoction comprised of Chuanxiong Rhizoma (CR; Chuanxiong) and Angelicae Sinensis Radix (ASR; Danggui) in a ratio of 2∶3. Previous studies indicate that FSS promotes blood circulation and dissipates blood stasis, thus which is being used widely to treat vascular diseases. Here, we aim to determine the cellular mechanism for the vascular benefit of FSS. The treatment of FSS reversed homocysteine-induced impairment of acetylcholine (ACh)-evoked endothelium-dependent relaxation in aortic rings, isolated from rats. Like radical oxygen species (ROS) scavenger tempol, FSS attenuated homocysteine-stimulated ROS generation in cultured human umbilical vein endothelial cells (HUVECs), and it also stimulated the production of nitric oxide (NO) as measured by fluorescence dye and biochemical assay. In addition, the phosphorylation levels of both Akt kinase and endothelial NO synthases (eNOS) were markedly increased by FSS treatment, which was abolished by an Akt inhibitor triciribine. Likewise, triciribine reversed FSS-induced NO production in HUVECs. Finally, FSS elevated intracellular Ca2+ levels in HUVECs, and the Ca2+ chelator BAPTA-AM inhibited the FSS-stimulated eNOS phosphorylation. The present results show that this ancient herbal decoction benefits endothelial function through increased activity of Akt kinase and eNOS; this effect is causally via a rise of intracellular Ca2+ and a reduction of ROS.  相似文献   

11.
12.
Induction of Nitric Oxide Synthase in Rat C6 Glioma Cells   总被引:8,自引:1,他引:8  
Abstract: We have examined the induction of nitric oxide syhthase (NOS) activity in the rat astrocyte-derived C6 glioma cell line. In contrast to the previous results with primary astrocyte cultures, incubation of C6 cells with bacterial endotoxin lipopolysaccharide (LPS; 1 μg/ml for 24 h) did not stimulate NO2 production. However, addition of either tumor necrosis factor-a (TNF-α) or interferon-γ (IFN-γ), cytokines that by themselves had no effect on NOS activity, imparted LPS responsiveness onto these cells in a dose-dependent manner (EC50 values of 39 ng/ml of TNF-α and 9.4 U/ml of IFN-γ), and the effect of TNF-α could be further potentiated (twofold) by the presence of interleukin-1β. The simultaneous presence of TNF-α and IFN-γ yielded a greater response than either cytokine alone; however, the respective EC50 values were not affected. A cytoplasmic extract from induced C6 cells catalyzed the Ca2+-independent conversion of l -arginine to l - citrulline, with an apparent K m of 51.2 n M , and this activity could be blocked by l -arginine analogues in the potency order amino > methyl > nitroarginine. Immunoblot analysis revealed an apparent molecular mass of 125 kDa for the NOS protein induced in C6 cells. These results indicate that the combination of LPS plus cytokines can induce NOS activity in C6 glioma cells with properties similar to those of the enzyme expressed in primary astrocyte cultures.  相似文献   

13.
NADPH diaphorase histochemistry has been used extensively for detecting nitric oxide synthase (NOS) activity in various cell types including neuronal cell bodies, vascular endothelium, cells of the immune system and epithelial cells. The use of the diaphorase technique in cell cultures to study the induction of NOS has not been investigated. In this paper we report the use of diaphorase histochemistry as a good marker for the detection of NOS activity in cultured cells. This technique can be used in conjunction with other established techniques to determine the presence and activity of NOS in cultured cells.  相似文献   

14.
Abstract: Exposure of primary rat astrocyte cultures to bacterial endotoxin lipopolysaccharide (LPS) causes expression of a Ca2+-in-dependent form of nitric oxide synthase (NOS). In these cells, the presence of norepinephrine (NE) caused a dose-dependent inhibition of the LPS induction of NOS activity, with an IC50 value of 100 nMand significant suppression at 100 pAf. Short incubations (5-40 min) with NE were as effective as 24-h continuous exposure, and inhibition was observed up to the longest incubation period measured (56 h). In contrast, previously induced NOS activity was not affected by exposure to NE. The effects of NE were mediated primarily by binding to β-adrenergic receptors (β-ARs) because (a) the β-AR antagonist propranolol, but not the n-AR antagonist phentol-amine, could reverse the effects of NE; (b) the β-AR agonist isoproterenol. but not the a-AR agonist phenylephrine, was as effective as NE in blocking the effects of LPS; and (c) incubation with the cyclic AMP analogue dibutyryl cyclic AMP replicated the effects of NE. In contrast to astroglial cultures, LPS induction of NOS activity in RAW 264.7 macrophage cells was not affected by NE or dibutyryl cyclic AMP. These results indicate that in brain, inducible NOS in astrocytes can be regulated by neurotransmitter binding to glial receptors.  相似文献   

15.
Vascular endothelial growth factor (VEGF) induces angiogenesis and regulates endothelial function via production and release of nitric oxide (NO), an important signaling molecule. The molecular basis leading to NO production involves phosphatidylinositiol-3 kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) activation. In this study, we have examined whether small GTP-binding proteins of the ADP-ribosylation factor (ARF) family act as molecular switches to regulate signaling cascades activated by VEGF in endothelial cells. Our results show that this growth factor can promote the rapid and transient activation of ARF1. In endothelial cells, this GTPase is present on dynamic plasma membrane ruffles. Inhibition of ARF1 expression, using RNA interference, markedly impaired VEGF-dependent eNOS phosphorylation and NO production by preventing the activation of the PI3K/Akt signaling axis. Furthermore, our data indicate that phosphorylation of Tyr801, on VEGF receptor 2, is essential for activating Src- and ARF1-dependent signaling events leading to NO release from endothelial cells. Lastly, this mediator is known to regulate a broad variety of endothelial cell functions. Depletion of ARF1 markedly inhibits VEGF-dependent increase of vascular permeability as well as capillary tubule formation, a process important for angiogenesis. Taken together, our data indicate that ARF1 is a novel modulator of VEGF-stimulated NO release and signaling in endothelial cells.  相似文献   

16.
旨在探讨羟基红花黄色素A(hydroxysafflor yellow A,HSYA)对脂多糖(lipopolysaccharide,LPS)作用后人脐静脉内皮细胞株HUVECs细胞株诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)表达的影响.培养HUVECs细胞株,用 1 mg/L LPS及不同浓度的HYSA处理细胞24 h,MTT法检测细胞增殖情况,硝基还原酶法检测培养液中一氧化氮(NO)含量,RT-PCR及Western blotting检测iNOS表达.结果表明0.01、0.1 mmol/L HYSA对LPS引起的iNOS升高无明显作用,但1 mmol/L HYSA能明显抑制LPS作用后高度表达的iNOS量.因此,HYSA能下调LPS所致iNOS的异常表达,这可能有助于临床治疗血管炎症疾病.  相似文献   

17.
Endothelium-derived nitric oxide (NO) is synthesized from L-arginine by endothelial nitric oxide synthase (eNOS) encoded by the eNOS gene on chromosome 7. The effects of the eNOS polymorphisms with the risk of spontaneous pregnancy losses are conflicting. In this study, we investigated the association of the eNOS genotypes with spontaneously aborted embryos in Koreans. Case-control studies were performed to evaluate the association between endothelial nitric oxide synthase (eNOS) gene polymorphisms and spontaneously aborted embryos. Ninety-nine spontaneously aborted fetuses at <20 weeks of gestational age and 103 child controls and 282 adult controls. Genotype frequency of three eNOS gene polymorphisms, ?786T>C, VNTR in intron 4 (4a4b), and 894G>T in spontaneously aborted embryos was surveyed. The frequencies of ?786TC and CC genotypes in aborted embryos were significantly higher than in both child and adult controls. The frequencies of 4a4a homozygote of VNTR polymorphism in intron 4 and TT homozygote of 894G>T polymorphisms were also higher in aborted embryos than in adult controls. Haploptype analysis suggested that ?786T>C polymorphism was a possible risk factor for spontaneously aborted embryos. eNOS gene polymorphisms, ?786T>C, VNTR in intron 4 (4a4b), and 894G>T, are associated with the risk of spontaneously aborted fetuses.  相似文献   

18.
Abstract: Mitochondrial inhibitors such as malonate are potent neurotoxins in vivo. Intrastriatal injections of malonate result in neuronal damage reminiscent of "excitotoxic" lesions produced by compounds that activate NMDA receptors. Although the mechanism of cell death produced by malonate is uncertain, overactivation of NMDA receptors may be involved; pretreatment of animals with NMDA antagonists provides neuroprotection against malonate lesions. NMDA receptor activation stimulates the enzyme nitric oxide (NO) synthase (NOS). Elevated tissue levels of NO may generate highly reactive intermediates that impair mitochondrial function. We hypothesized that NO may be a mediator of malonate toxicity. We investigated whether in vivo inhibition of NO production by the NOS inhibitor N ω-nitro- l -arginine (NLA) would attenuate lesions produced by intrastriatal injections of malonate. We found that systemic injections of 3 mg/kg of NLA significantly reduced the extent of histologic damage elicited by intrastriatal injections of 1.5 µmol of malonate in adult rats.  相似文献   

19.
20.
Abstract: Rat brain glial cells have the capacity to express a calcium-independent form of nitric oxide synthase (iNOS). To test if iNOS induction required tyrosine kinase activity, we made use of genistein, a selective inhibitor of tyrosine kinases. In both primary astrocyte cultures and C6 glioma cells, the presence of genistein prevented both lipopolysaccharide- and cytokine-induced NOS activity in a dose-dependent manner. The presence of tyrphostin-25 (10 µ M ), which is highly specific for tyrosine kinases, also blocked iNOS induction. Additional characterization showed that genistein blocked iNOS induction in a dose-dependent manner (IC50 of ∼ 40 µ M ), that the continuous presence of genistein was not necessary to observe inhibition, and that preincubation with genistein led to higher levels of inhibition than the simultaneous addition of genistein and inducers. The decrease in iNOS activity due to genistein was accompanied by a decrease in iNOS mRNA level as detected by a specific PCR assay. These results indicate that induction of astroglial iNOS expression requires tyrosine kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号