首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten new dinucleotide microsatellite loci were isolated from the Antarctic fur seal Arctocephalus gazella. These markers should prove useful for studying the reproductive ecology of Antarctic fur seals and other related pinniped species.  相似文献   

2.
Pantherine felids (‘big cats’) include the largest living cats, apex predators in their respective ecosystems. They are also the earliest diverging living cat lineage, and thus are important for understanding the evolution of all subsequent felid groups. Although the oldest pantherine fossils occur in Africa, molecular phylogenies point to Asia as their region of origin. This paradox cannot be reconciled using current knowledge, mainly because early big cat fossils are exceedingly rare and fragmentary. Here, we report the discovery of a fossil pantherine from the Tibetan Himalaya, with an age of Late Miocene–Early Pliocene, replacing African records as the oldest pantherine. A ‘total evidence’ phylogenetic analysis of pantherines indicates that the new cat is closely related to the snow leopard and exhibits intermediate characteristics on the evolutionary line to the largest cats. Historical biogeographic models provide robust support for the Asian origin of pantherines. The combined analyses indicate that 75% of the divergence events in the pantherine lineage extended back to the Miocene, up to 7 Myr earlier than previously estimated. The deeper evolutionary origin of big cats revealed by the new fossils and analyses indicate a close association between Tibetan Plateau uplift and diversification of the earliest living cats.  相似文献   

3.
4.
The partial skull and mandible of an unidentified halitheriine dugongid, collected from the Early Miocene Nye Mudstone in Lincoln County, Oregon, USA, is the earliest record of the Sirenia in the eastern Pacific Ocean. It is probably earlier than Early or Middle Miocene sirenians recently found in Peru, and is definitely earlier than any known from California or Baja California. However, it appears to be slightly younger than fossil sirenian remains recently reported from Late Oligocene rocks in Japan. The Oregon specimen is also the most northern record of the Sirenia on the west coast of North America prior to the Pleistocene although other sirenians did evidently reach and surpass such latitudes by the Late Miocene when a dispersal took place from America to the North Pacific coasts of the Old World. The Oregon specimen probably represents sirenians that spread to the North Pacific from the Caribbean, quite possibly prior to the Miocene. The Nye Mudstone was deposited during the warmest period of the Neogene on the coast of Oregon, and it does not seem necessary to postulate a greater degree of cold-tolerance for the Oregon sirenian than is exhibited by living sea cows.  相似文献   

5.
6.
Pinnipeds generally target relatively small prey that can be swallowed whole, yet often include larger prey in their diet. To eat large prey, they must first process it into pieces small enough to swallow. In this study we explored the range of prey‐processing behaviors used by Australian sea lions (Neophoca cinerea) when presented with large prey during captive feeding trials. The most common methods were chewing using the teeth, shaking prey at the surface, and tearing prey held between the teeth and forelimbs. Although pinnipeds do not masticate their food, we found that sea lions used chewing to create weak points in large prey to aid further processing and to prepare secured pieces of prey for swallowing. Shake feeding matches the processing behaviors observed in fur seals, but use of forelimbs for “hold and tear” feeding has not been previously reported for other otariids. When performing this processing method, prey was torn by being stretched between the teeth and forelimbs, where it was secured by being squeezed between the palms of their flippers. These results show that Australian sea lions use a broad repertoire of behaviors for prey processing, which matches the wide range of prey species in their diet.  相似文献   

7.
The development of pierce‐feeding and loss of oral processing represented major adaptations for underwater feeding in marine mammals. We examined the evolution of pierce‐feeding and its association with changes in tooth spacing and tooth size to determine whether pierce‐feeding was practiced by the earliest known pinnipeds. Data on crown size and spacing in postcanine dentition were collected and 1) analysed by principal components analysis (PCA) to determine the tooth morphospace of arctoid carnivores, 2) analysed by least squares (LS) regression and phylogenetic independent contrasts (PIC) to determine what morphological variables were associated with increases in tooth spacing, and 3) used to reconstruct the evolution of feeding related traits within a phylogenetic context. The PCA analysis revealed that within arctoid carnivores, the greatest differences in morphospace were associated with pierce‐feeding, and the early‐diverging seal Enaliarctos was placed within the pinniped morphospace. Increased tooth spacing within Pinnipedia is a result of decreased postcanine crown size. When the evolution of dental characters is reconstructed, ‘enaliarctines’ were found to represent an intermediate stage in evolution between ‘fissiped’ and pinniped carnivores. They retained the limited tooth spacing of terrestrial carnivores, possessed postcanine crown lengths intermediate in size between pinnipeds and fissipeds, and possessed reduced heterodonty characteristic of crown pinnipeds. Our study indicated that pierce‐feeding evolved early within pinnipeds. This suggested either that pierce‐feeding evolved prior to the loss of mastication, or that pierce‐feeding evolved at the same time as loss of mastication, and well before simplification of the dentition was completed.  相似文献   

8.
The earliest undisputed crown-group amniotes date back to the Late Carboniferous, but the fossil record of amniotic eggs and embryos is very sparse, with the oldest described examples being from the Triassic. Here, we report exceptional, well-preserved amniotic mesosaur embryos from the Early Permian of Uruguay and Brazil. These embryos provide the earliest direct evidence of reproductive biology in Paleozoic amniotes. The absence of a recognisable eggshell and the occurrence of a partially articulated, but well-preserved embryo within an adult individual suggest that mesosaurs were viviparous or that they laid eggs in advanced stages of development. Our finds represent the only known documentation of amniotic embryos in the Paleozoic and the earliest known case of viviparity, thus extending the record of these reproductive strategies by 90 and 60 Ma, respectively.  相似文献   

9.
An overview of the upper Oligocene-upper Miocene marine sediments outcropping in the Maltese Islands provides a detailed stratigraphical setting of several marine mammal assemblages. The studied fossil material collected within the entire sequence, is now kept in the National Museum of Natural History of Mdina (Malta). Nannoplankton analysis of some selected sections, where mammal remains have been discovered, is also undertaken. The fossil marine mammals, consisting mostly of isolated ear bones and teeth, are referred to cetaceans (both mysticetes and odontocetes), sirenians, and pinnipeds. The cetacean record evidences an evolutionary pattern that agrees with the Oligo-Miocene general trend, characterized by the progressive rarefaction and disappearance of archaic families (squalodontids, waipatiids, and, maybe, mammalodontids), and by the appearance and diversification of the extant families represented within younger strata (kogiids, pontoporiids and ziphiids). Pontoporiids, waipatiids, and tentatively mammalodontids are here reported for the first time in the Mediterranean, while the kogiid record represents the only sure Miocene evidence of this family in the Mediterranean. The geographical distribution of the mammalodontids and the waipatiids, based on the Maltese and extra-Mediterranean records, supports an open communication between the Proto-Mediterranean and the Indo-Pacific during the late Oligocene. Sirenians are represented by several dugongid pachyosteosclerotic rib fragments, collected from upper Oligocene through upper Miocene sediments. Pinnipeds are represented by a femur fragment from the Serravallian, referred to an indeterminate monachine, a phocid subfamily already reported from the Mio-Pliocene of the Mediterranean.  相似文献   

10.
11.
Cliffs are refuges for old trees and shrubs. In the Mediterranean Basin most dendroclimatic reconstructions have focused on high-elevation forests where tree radial growth is constrained by low temperatures in addition to drought stress. Old shrubs may provide longer ring-width series of hydroclimate proxies in low-elevation, drought-prone Mediterranean ecosystems where old trees are rare. To fill this research gap we investigated the maximum age and climate sensitivity of young, old, and recently dead Phoenician junipers (Juniperus phoenicea L.), growing on calcareous cliffs and nearby plains, in the Guara Natural Park (northeast Spain). The oldest living juniper was 14C-dated to be 927 years old, and it was named “Sancho” after Don Quixote’s squire. Based on ring counts, the maximum age was 655 years. The difference in age estimates between the 14C-dates and ring counts was 39 years indicating that ring counts underestimate age. This was due to missing and wedging rings making the cross-dating of old junipers unfeasible. Cool and wet conditions from May to July enhanced radial growth of young junipers. Old shrubs have a high dendroecological potential in Mediterranean sites where their growth is constrained by warm-dry conditions during the growing-season. Further techniques combining dendrochronological and wiggle-match 14C dating may allow reconstructing long-term hydroclimate in low-elevation Mediterranean areas.  相似文献   

12.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   

13.
We analysed the cranial ontogeny of male Arctocephalus australis (Zimmermann, 1783) (N = 116), Arctocephalus gazella (Peters, 1875) (N = 69), and Arctocephalus tropicalis (Gray, 1872) (N = 51) to study skull growth and its allometric patterns in the genus. We used 15 metric variables with bivariate and multivariate approaches to detect interspecific similarities and differences between growth trends, which we discussed in the context of phylogeny and life history. We found common trajectories in 20% of variables, detecting that the differences between adults were associated with size. We detected higher growth rates in A. gazella than in A. australis and A. tropicalis, which were associated with shape differences. Amongst the three species, A. tropicalis was morphologically intermediate, showing additional common trends with A. gazella and A. australis, and an intermediate position in the multivariate morphospace. Allometric patterns were also compared with growth trends described for Otaria byronia (Péron, 1816) and Mirounga leonina (Linnaeus, 1758). We detected positive allometry in Arctocephalus for the mastoid width (MW) but negative allometry in O. byronia and M. leonina. This could indicate that males of Arctocephalus exhibited a delayed development of MW. Finally, the presence of common growth trends for the skull length and the postorbital constriction could indicate a conservative pattern within otariids. © 2014 The Linnean Society of London  相似文献   

14.
Scats of subantarctic fur seals Arctocephalus tropicalis at Marion Island were collected from 1996 to 2,000, to examine temporal variability in the diet, factors affecting the variability and how the diet differed from that of the Antarctic fur seal A. gazella in the same period. For A. tropicalis, 19 prey species, of which 18 were fish and one a cephalopod, were identified in 213 scats. Fish were the main prey, occurring in 98.1 % of scats, whereas the cephalopod was present in only 1.4 % of scats. Amongst fish species, Myctophidae were most abundant, with Gymnoscopelus piabilis, G. fraseri and Electrona carlsbergi being the commonest prey items. Other fish families present in the diet in small numbers were Channichthyidae, Paralepididae, Nototheniidae, Microstomatidae and Notosudidae. Fish eaten ranged in size from Protomyctophum bolini and Krefftichthys anderssoni of standard length (SL) 25 mm to a single Dissostichus eleginoides of SL 249 mm. Differences in the diet existed between summer and winter. However, prey type accounted for most variability in the diet. In previous studies based on scats, a dominance of fish in the diet of A. tropicalis was also found at Possession Island (Iles Crozet), Amsterdam Island and Macquarie Island, but the dominant prey species differed between the various localities, also suggesting that prey availability is a major determinant of diet. At Marion Island, from 1996 to 2000 the diet of A. gazella comprised similar prey to that of A. tropicalis, but the proportional contribution of prey types differed in instances.  相似文献   

15.
The sequence of the mtDNA of the grey seal, Halichoerus grypus, was determined. The length of the molecule was 16,797 base pairs. The organization of the molecule conformed with that of other eutherian mammals but the control region was unusually long due to the presence of two types of repeated motifs. The grey seal and the previously reported harbor seal, Phoca vitulina, belong to different but closely related genera of family Phocidae, true (or earless) seals. In order to determine the degree of differences that may occur between mtDNAs of closely related mammalian genera, the 2 rRNA genes, the 13 peptide coding genes, and the 22 tRNA genes of the 2 species were compared. Total nucleotide difference in the peptide coding genes was 2.0–6.1%. The range of conservative difference was 0.0–1.5%. In the inferred peptide sequences the amino acid difference was 0.0–4.5%, and the difference with respect to chemical properties of amino acids was 0.0–3.0%. A gene that showed a limited degree of difference in one mode of comparison did not necessarily show a corresponding limited difference in another mode. The ratio for differences in codon positions 1, 2, and 3 was 2.7:1:16. The corresponding ratio for conservative differences was 1.8:1. l:1. The evolutionary separation of the two species was calculated to have taken place 2–2.5 million years ago. This dating gives the figure 8 × 10–9 as the mean rate of substitution per site and year in the entire mtDNA molecule. Comparison with the cytochrome b gene of the Hawaiian monk seal and the Weddell seal suggested that the lineage of these two species and that of the grey and harbor seals separated 8 million years ago. Correspondence to: Ú. Árnason  相似文献   

16.
The accuracy of the underwater and airborne horizontal localization of different acoustic signals by the northern fur seal was investigated by the method of instrumental conditioned reflexes with food reinforcement. For pure-tone pulsed signals in the frequency range of 0.5-25 kHz the minimum angles of sound localization at 75% of correct responses corresponded to sound transducer azimuth of 6.5-7.5 degrees +/- 0.1-0.4 degrees underwater (at impulse duration of 3-90 ms) and of 3.5-5.5 degrees +/- 0.05-0.5 degrees in air (at impulse duration of 3-160 ms). The source of pulsed noise signals (of 3-ms duration) was localized with the accuracy of 3.0 degrees +/- 0.2 degrees underwater. The source of continuous (of 1-s duration) narrow band (10% of c.fr.) noise signals was localized in air with the accuracy of 2-5 degrees +/- 0.02-0.4 degrees and of continuous broad band (1-20 kHz) noise, with the accuracy of 4.5 degrees +/- 0.2 degrees.  相似文献   

17.
When hunting at sea, pinnipeds should adapt their foraging behaviors to suit the prey they are targeting. We performed captive feeding trials with two species of otariid seal, Australian fur seals (Arctocephalus pusillus doriferus) and subantarctic fur seals (Arctocephalus tropicalis). This allowed us to record detailed observations of how their foraging behaviors vary when presented with prey items that cover the full range of body shapes and sizes encountered in the wild. Small prey were captured using suction alone, while larger prey items were caught in the teeth using raptorial biting. Small fish and long skinny prey items could then be swallowed whole or processed by shaking, while all prey items with body depths greater than 7.5 cm were processed by shaking at the water's surface. This matched opportunistic observations of feeding in wild Australian fur seals. Use of “shake feeding” as the main prey processing tactic also matches predictions that this method would be one of the only tactics available to aquatic tetrapods that are unable to secure prey using their forelimbs.  相似文献   

18.
《Palaeoworld》2016,25(1):1-11
Eopriapulites sphinx is the oldest known scalidophoran animal and so far the only cycloneuralian body fossil from the Cambrian Fortunian Stage. The hexaradial symmetry exhibited by the arrangement of its pharyngeal teeth, coronal scalids and introvert scalids expand our knowledge on the early evolution of cycloneuralians. The holotype and only specimen is a fragment with the proboscis and the anterior trunk part preserved, but the posterior trunk part is missing. Here, we report three-dimensionally phosphatized worm trunk fragments from the same locality and horizon yielding E. sphinx. They are regarded as conspecific with E. sphinx based on co-occurrence and identical annulations, and provide key information on the trunk morphology. E. sphinx is completely reconstructed here as a long vermiform animal with densely annulated trunk and no caudal outgrowths. An updated phylogenetic analysis supports that E. sphinx is a stem-lineage derivative of Scalidophora and also indicates that the hexaradial symmetry of Eopriapulites might have evolved independently from that of Nematoida.  相似文献   

19.
The earliest record of plant visiting in bats dates to the Middle Miocene of La Venta, the world''s most diverse tropical palaeocommunity. Palynephyllum antimaster is known from molars that indicate nectarivory. Skull length, an important indicator of key traits such as body size, bite force and trophic specialization, remains unknown. We developed Bayesian models to infer skull length based on dental measurements. These models account for variation within and between species, variation between clades, and phylogenetic error structure. Models relating skull length to trophic level for nectarivorous bats were then used to infer the diet of the fossil. The skull length estimate for Palynephyllum places it among the larger lonchophylline bats. The inferred diet suggests Palynephyllum fed on nectar and insects, similar to its living relatives. Omnivory has persisted since the mid-Miocene. This is the first study to corroborate with fossil data that highly specialized nectarivory in bats requires an omnivorous transition.  相似文献   

20.
The vocal repertoire, structure, and behavioral context of airborne vocalizations produced by Australian fur seals (Arctocephalus pusillus doriferus) are described using recordings made at a breeding colony on Kanowna Island, Bass Strait, Australia. The study identified six different call types: three produced by males (bark, guttural threat, and submissive call); five produced by females (bark, guttural threat, submissive call, growl, and pup attraction call) and the female attraction call produced by pups and yearlings. Vocalizations were compared according to age and sex classes. The overall structure and function of the pup attraction and female attraction call produced by females, yearlings, and pups, was similar. However, while similar in their overall appearance, certain call types have a lower fundamental frequency when compared with other fur seals. In addition, the male bark call alters in rate of production according to the context used, where calls are slower when males are stationary and advertising their territorial status and faster when males are involved in confrontations with other males or actively herding females. Further research is required to investigate changes in environmental conditions and their effects on shaping the call structure and communication in Australian fur seals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号