首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present investigation, we compared the metabolism of arachidonic acid in human endometrial stromal cells maintained in monolayer culture with that in human decidual tissues. By gas-chromatographic analysis, the distribution of arachidonic acid in glycerophospholipids and in the neutral lipids of decidual tissues and stromal cells in culture was similar. After the addition of [14C]arachidonic acid to the culture medium, steady-state conditions with respect to radioactive labeling of the lipids of the cells were attained after 24 h, except for phosphatidylethanolamine and neutral lipids. The percentage distribution of [14C]arachidonic acid in the lipids of the cells in culture was as follows: phosphatidylcholine, 41%; phosphatidylserine, 5%; phosphatidylinositol, 19%; phosphatidylethanolamine, 22%; neutral lipids, 11%. This distribution of arachidonic acid among the lipids is similar to that in decidual tissue, except for that in phosphatidylethanolamine. The amount of radioactivity in phosphatidylethanolamine continued to increase up to 72 h whereas that in neutral lipids declined after a maximum amount was present at 4 h. In the cells in monolayer culture, [14C]prostaglandin E2 and [14C]prostaglandin F2 alpha were produced from [14C]arachidonic acid, as is true in superfused decidual tissue. The similarities in arachidonic acid metabolism in these cells to that in decidual tissue are supportive of the proposition that endometrial stromal cells in monolayer culture are an appropriate model for the study of the regulation of arachidonic acid release and prostaglandin formation by endometrium and decidua vera.  相似文献   

2.
Evidence that prostaglandins are involved in intercellular communication during blastocyst implantation suggested that development and loss of uterine sensitivity to deciduogenic stimuli during early pregnancy might depend upon changes in uterine capacity to mobilize arachidonic acid from phospholipid. We measured levels of arachidonic acid in lipid fractions on Day 6 of pregnancy in uterine segments containing implantation sites, in uterine segments between implantation sites, and in luminal epithelial cells after a deciduogenic stimulus. Arachidonic acid in uterine phospholipid was depleted at implantation sites. With an intrauterine deciduogenic stimulus of hormonally primed ovariectomized rat uteri, the arachidonic acid content of the luminal epithelium decreased. When the fatty acid composition of the luminal epithelium was examined during pseudopregnancy and after progestin-estrogen treatment, however, no changes in arachidonic acid composition and content were observed. These data suggest that during blastocyst implantation, luminal epithelial cells at implantation sites mobilize arachidonic acid from phospholipid for prostaglandin synthesis, but that uterine sensitivity and the capacity to synthesize prostaglandins in response to the blastocyst does not depend upon changes in arachidonic acid levels in uterine phospholipid.  相似文献   

3.
Arachidonic acid is metabolised via the cyclo-oxygenase pathway to several biologically active metabolites. These metabolites control important reproductive functions like luteolysis of the corpus luteum. The metabolism of arachidonic acid was studied by the enzymatic conversion of [1-14C]-labelled arachidonic acid in sheep endometrial tissue. The inhibitory capacity of sheep endometrial tissue was measured by the enzymatic conversion of [1-14C]-arachidonic acid by sheep seminal vesicular gland microsomes. Endometrial microsomes converted arachidonic acid into different prostaglandins and monohydroxy acids but at a low rate. A factor(s) inhibiting both prostaglandin and monohydroxy acid synthesis was found in both the microsomal and cytosolic fractions of endometrial tissue. A very high inhibitory potency of prostaglandin and monohydroxy acid synthesis, calculated as IC50 values, was found in cytosolic fractions. For comparison IC50 values of indomethacin, mefenamic acid, carprofen and acetylsalicylic acid were also calculated in this in vitro system. These data indicate that both prostaglandin and monohydroxy acid synthesizing capacities and an inhibitory factor(s) are present in sheep endometrium and possibly regulate arachidonic acid metabolism in this tissue.  相似文献   

4.
The role of arachidonic acid in rat heart cell metabolism   总被引:4,自引:0,他引:4  
Although it is known that arachidonic acid accumulates in the ischemic myocardium and that cardiac prostaglandin formation from the precursor arachidonic acid is altered during disease states, the role of arachidonic acid in the myocyte itself is not yet clear. Using isolated Ca-tolerant adult rat heart muscle cells, we were able to study cardiac metabolism of arachidonic acid without the effects induced by endothelial or other non-muscle tissue. Myocytes rapidly incorporate arachidonic acid as well as other fatty acids into their lipid pools, the predominant acceptor being the triacylglycerols at an extracellular fatty acid concentration of 20 microM. As exogenous arachidonic acid is decreased, the distribution pattern shifts to favor phospholipid esterification. Cardiocyte prostaglandin production from arachidonic acid added to the incubation medium was limited (less than 1% conversion of added arachidonic acid) and lipoxygenase pathway activity was not detected. Oxidation rates of arachidonic acid were 3-fold lower than for palmitic acid, indicating that it is of secondary importance in energy-yielding reactions. Our results suggest that arachidonic acid serves primarily as a structural component of myocardial membranes and that its release during ischemia would permit its use as a substrate for prostaglandin production by coronary vascular tissue.  相似文献   

5.
We studied the calcium dependency of the stimulation of prostaglandin synthesis which occurs when perfusing strips of guinea pig Taenia coli with potassium-free media. Stimulation was rapidly reversed by removal of extracellular Ca from the bathing solution. The Ca ionophore A23187 markedly stimulated prostaglandin E2 synthesis, an effect that is dependent on the presence of extracellular Ca. Prostaglandin E2 production in strips in potassium-deficient media was also sensitive to increases in extracellular Ca, and was augmented at concentrations of 7-15 mM. In strips which had been incubated with [3H]arachidonic acid, exposure to potassium-free media caused an increased release of [3H]arachidonic acid and [3H]prostaglandin E2. Release of these labeled compounds with the strips in potassium-free media was further augmented by increasing extracellular [Ca2+] from 2.5 to 10 mM. Treatment with the Ca antagonist agent verapamil did not influence activation of prostaglandin synthesis by potassium-deficient media. The presence of Mn2+ of Ba2+ had similar effects on prostaglandin synthesis, although they had opposite effects on mechanical activity. We conclude that a plasma membrane associated Ca pool is involved in activation of phospholipid metabolism which results in release of esterified arachidonic acid and subsequent prostaglandin synthesis. This Ca pool is in rapid equilibrium with extracellular Ca, is not influenced by cytoplasmic Ca, and is not related to Ca involved in Ca gating in the surface membrane. These data also indicate dissociation between processes involved in muscle contraction and activation of prostaglandin synthesis.  相似文献   

6.
Chorioamnionitis is frequently associated with preterm labour. We have used a cell culture model system to examine the effects of leukocytes upon the metabolism of endogenous arachidonic acid from within amnion cells. We have demonstrated that activated leukocytes release substances which increase the overall release and metabolism of endogenous arachidonic acid within amnion cells causing an increase in prostaglandin E2 production as well as a smaller increase in non-cyclo-oxygenase metabolism. When amnion cells and leukocytes are cultured together, in addition to prostaglandin E2 production by amnion cells, arachidonic acid released by the amnion cells appears to be metabolised by leucocytes to prostaglandin F2 alpha, prostacyclin and thromboxane A2. Prostaglandins E2 and F2 alpha are the principal cyclo-oxygenase products of this interaction. We postulate that chorioamnionitis stimulates preterm labour not only by causing an increase in prostaglandin E2 synthesis by amnion cells but by metabolism of amnion derived arachidonic acid to the powerfully oxytocic prostaglandin F2 alpha by leukocytes.  相似文献   

7.
Arachidonic acid is considered to be one of the precursors in prostaglandin synthesis. For this reason, arachidonic acid was measured in a series of amniotic fluid. Samples in order to rest the hypothesis that the beginning of uterine activity is accompanied by a rise of its concentration. In fact, it could be shown that in amniotic fluid from patients in labor arachidonic acid levels are much higher than in amniotic fluid from patients without uterine activity.  相似文献   

8.
We have compared the metabolism of (3H) arachidonic acid by monolayers of human amnion, cells obtained prior to or following labor at term. Radiolabel was either added exogenously or previously incorporated into cellular phospholipid pools to compare metabolism of arachidonic acid from different substrate sources. Cells obtained both prior to and following labor synthesized metabolites co-chromatographing on HPLC with di- and mono-HETEs and also a metabolite with polarity corresponding to a epoxyeicosatrienoic acid. Both types of cells were able to synthesize PGE2 when (3H) arachidonic acid was added exogenously. However, only those cells obtained following labor synthesized PGE2 from (3H) arachidonic acid incorporated into intracellular pools. These findings suggest that the cyclooxygenase and PGE2 isomerase enzymes are present in amnion prior to delivery but that exogenous arachidonic acid would be required for PGE2 synthesis at that time as the enzymes do not appear to be linked to a source of endogenous arachidonic acid. At the time of parturition, there may be a switching on of an enzyme system to generate arachidonic acid from intracellular pools specifically for PGE2 synthesis or alternatively coupling of such a system to a cyclooxygenase-PGE2 isomerase system resulting in PGE2 synthesis. These findings raise intriguing new possibilities for the regulation of eicosanoid synthesis in amnion which may include membrane topography, substrate pool-enzyme linking and regulation of specific phospholipase enzymes.  相似文献   

9.
Exogenous progesterone given early in the ovine estrous cycle results in precocious luteolysis. It has been suggested that under this circumstance regression of the corpus luteum is caused by an advancement in the timing of uterine secretion of prostaglandin F2 alpha. Uterine tissues were obtained from ewes following administration of progesterone (or injection vehicle), fixed in paraformaldehyde, and embedded in paraffin. Tissue sections were hybridized using an 35S-labeled cRNA probe specific for cyclooxygenase mRNA. There was approximately an eight-fold increase in the level of hybridization signal, localized mainly to uterine glands, consequential to treatment with progesterone. Thus, progesterone appears to control expression of the endometrial gene and(or) the stability of the message encoding for a rate-limiting enzyme involved in metabolism of arachidonic acid to its luteolytic product, thereby resolving the length of the nonpregnant cycle.  相似文献   

10.
5-hydroxyeicosatetraenoic acid (5-HETE) is an arachidonate lipoxygenase product capable of stimulating uterine contractility in a dose-dependent manner in vitro. The purpose of this study was to determine if spontaneous human labor at term is associated with changes in the concentration of this metabolite in amniotic fluid. Fluid was retrieved from 36 women not in labor and from 30 women in active labor at term. 5-HETE was determined by radioimmunoassay. The median amniotic fluid concentration of 5-HETE of women in labor was significantly greater than that of women not in labor (3538 pg/ml vs. 1977 pg/ml, respectively; p = 0.05). This observation is consistent with activation of the lipoxygenase pathway of arachidonic acid metabolism during spontaneous human parturition at term.  相似文献   

11.
Since the presence of serum in culture media has been shown to alter prostaglandin production, as well as to interfere with the action of anti-inflammatory drugs, we have studied the effect of dexamethasone, a potent steroidal anti-inflammatory drug, on the metabolism of arachidonic acid by human monocyte-like cells (U937) grown in a fully defined medium. Under these culture conditions, dexamethasone (10(-6) M, 24 h) induced a marked stimulation of the release of unmetabolized arachidonic acid into the culture medium. The steroid also induced an inhibition of cell proliferation which became significant only after 48 h of treatment. The accumulation of arachidonic acid in the medium after steroid treatment was associated with a significant inhibition of cell acyltransferase activity, suggesting that steroids may also act upon arachidonic acid metabolism at sites other than those of phospholipase activity.  相似文献   

12.
alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2.  相似文献   

13.
Thrombin and certain prostaglandins are both capable of stimulating the proliferation of cultured cells. Since thrombin stimulates the release and metabolism of arachidonic acid, the precursor of prostaglandins, we examined the relationship between this release and metabolism and the stimulation of cell division in cultured fibroblasts. We also examined the role of prostaglandin synthesis in thrombin-stimulated phosphatidylinositol synthesis. The data in this report demonstrate that the release and metabolism of arachidonic acid are not necessary for thrombin-stimulated cell division. The presence of a low concentration of chymotrypsin prevented thrombin-stimulated arachidonic acid release and metabolism without affecting the stimulation of cell division. Furthermore, thrombin-stimulated cell division occurred in the presence of indomethacin concentrations that prevented cyclooxygenase-mediated metabolism of arachidonic acid. The following experiments showed that thrombin-stimulated phosphatidylinositol synthesis was brought about by a cyclooxygenase-mediated metabolite(s) of arachidonic acid. Indomethacin inhibited the cyclooxygenase-mediated metabolism of arachidonic acid without affecting the thrombin-stimulated release of arachidonic acid. Indomethacin also inhibited thrombin-stimulated phosphatidylinositol synthesis. The dose dependence of this inhibition paralleled the inhibition by indomethacin of cyclooxygenase-mediated metabolism of arachidonic acid. In addition, prostaglandin F2 alpha stimulated phosphatidylinositol synthesis in the presence of indomethacin concentrations which prevented thrombin-stimulated phosphatidylinositol synthesis.  相似文献   

14.
The effects of estradiol on the arachidonic acid pool and prostacyclin biosynthetic activity in rat aortic smooth muscle cells were studied. Estradiol has no significant effect on the distribution of [14C]arachidonic acid in cells with respect to prostacyclin production assay, the endogenous fatty acid (specifically, arachidonic acid) composition of cellular phospholipid fractions and cellular phospholipase (or/and lipase) activities. However, estradiol significantly stimulates both prostaglandin cyclooxygenase and prostacyclin synthetase activities of cells, and induction of new protein biosynthesis is involved in the effect of estradiol on the stimulation of prostacyclin biosynthetic activity.  相似文献   

15.
alpha-Tocopherol and three derivatives in which the phytol chain is modified or deleted were examined for their effect on cultured keratinocyte arachidonic acid metabolism. 2,2,5,7,8-Pentamethyl-6-hydroxychromane (PMC), in which the phytol chain is replaced by a methyl group, inhibited basal, bradykinin (BK)- and A23187-stimulated prostaglandin E2 (PGE2) synthesis with an apparent Ki of 1.3 microM. The Ki of the analogue with six carbon atoms in the side chain (C6) was 5 microM while that of the C11 analogue was 10 microM. No effect of alpha-tocopherol was observed. The mechanism of inhibition was studied using PMC. The effect of PMC on phospholipase and cyclooxygenase activity was assayed using stable isotope mass measurements of PGE2 formation, which assesses arachidonate release and cyclooxygenase metabolism simultaneously. BK-stimulated formation of PGE2, derived from endogenous phospholipid, was decreased 60% by 5 microM PMC and eliminated by 50 microM PMC, compared with controls. No difference in PGE2 formed from exogenous arachidonic acid was observed, indicating no effect of PMC on cyclooxygenase activity. In contrast, no effect of 5 microM PMC was observed on BK-stimulated [3H]arachidonic acid release from prelabeled cultures. The capacity of PMC to inhibit phospholipase activity in vitro was also assessed. PMC inhibited hydrolysis of phospholipid substrate by up to 60%. These results suggest that alpha-tocopherol analogues with alterations in the phytol chain inhibit eicosanoid synthesis by preferential inhibition of phospholipase.  相似文献   

16.
Thapsigargin, a non-TPA-type tumor promoter, releases histamine and stimulates arachidonic acid metabolism in rat peritoneal mast cells. In order to clarify the relationship between the histamine-releasing activity and the arachidonic acid metabolism-stimulating activity of thapsigargin in mast cells, the effects of cyclooxygenase inhibitors, indomethacin and ibuprofen, a lipoxygenase inhibitor, AA861, and dual inhibitors for cyclooxygenase and lipoxygenase, nordihydroguaiaretic acid and BW755C, on histamine release and arachidonic acid metabolism were examined. High-performance liquid chromatography analysis revealed that the peritoneal mast cells preferentially produce prostaglandin D2 by thapsigargin treatment. These inhibitors suppressed thapsigargin-induced prostaglandin D2 production in a dose-dependent manner, but failed to inhibit histamine release, suggesting that the mechanisms for stimulation of histamine release by thapsigargin is not dependent on increased arachidonic acid metabolism. Time-course experiments of histamine release and the release of radioactivity from [3H]arachidonic acid-labeled mast cells also provide evidence for a difference in mechanism.  相似文献   

17.
Human platelet-derived growth factor (PDGF) stimulates release of arachidonic acid from cellular phospholipids, synthesis and release of prostaglandins from the cell, and initiation of DNA synthesis in cultures of 3T3 Swiss mouse fibroblasts at similar concentrations with four independent preparations representing a million-fold range of purification. Stimulation of archidonic acid and prostaglandin release is an early event (beginning within minutes) in the response to PDGF treatment. Incubating cells with PDGF at 4°C followed by washing leads to activation of archidonic acid release on warming the cells to 37°C, consistent with binding of the factor to the cell surface. PDGF-stimulated arachidonic acid release, prostaglandin release, and initiation of DNA synthesis are all inhibited by phenylglyoxal at similar concentrations. These results suggest that activation of arachidonic acid release from phospholipids plays an essential role in the mechanism by which PDGF stimulates the initiation of DNA synthesis in 3T3 cells. The stimulation of initiation of DNA synthesis by PDGF does not appear to be mediated by the synthesis of prostaglandins or other known arachidonic acid metabolites because neither indomethacin (a fatty acid cyclooxygenase inhibitor) nor phenidone (a lipoxygenase inhibitor) inhibit initiation of DNA synthesis at concentrations which inhibit arachidonic acid metabolism. Although the activation of arachidonic acid release by PDGF is a calcium-dependent process, a simple calcium flux appears unimportant to the mechanism of activation. Evidence was also obtained against an involvement of sodium fluxes or proteolytic activity in the mechanism of stimulating arachidonic acid release by PDGF or serum.  相似文献   

18.
Chorioamnionitis is frequently associated with preterm labour. We have used a cell culture model system to examine the effects of leukocytes upon the metabolism of endogenous arachidonic acid from within amnion cells. We have demonstrated that activated leukocytes release substances which increase the overall release and metabolism of endogenous arachidonic acid within amnion cells causing an increase in prostaglandin E2 production as well as a smaller increase in non-cyclooxygenase metabolism. When amnion cells and leukocytes are cultured together, in addition to prostaglandin E2 production by amnion cells, arachidonic acid released by the amnion cells appears to be metabolised by leucocytes to prostaglandin F2α, prostacyclin and thromboxane A2. Prostaglandins E2 and F2α are the principal cyclo-oxygenase products of this interaction.We postulate that chorioamnionitis stimulates preterm labour not only by causing an increase in prostaglandin E2 synthesis by amnion cells but by metabolism of amnion derived arachidonic acid to the powerfully oxytocic prostaglandin F2α by leukocytes.  相似文献   

19.
I N Bojesen 《Prostaglandins》1985,30(3):479-489
The glycerolipid production by rat renal papillary slices varied inversely with the urea concentration (0-1660 mM) whether the production was measured as labelling of the glycerol backbone from glucose or as incorporation of labelled arachidonic acid and palmitic acid. The rate of phospholipid formation was most dependent on medium urea concentrations in the range between 0 and 1100 mM. The production of prostaglandins PGE2 and PGF2 alpha, measured radioimmunologically or by an isotope derivative method was in the same range inversely related to the production of glycerolipids and chain elongations. The effect of urea on prostaglandin formation is probably indirectly caused by the inhibition of the phospholipid formation and chain elongation, since the effect was abolished by 1% defatted albumin in the medium. The data suggest that the level of free arachidonic acid within the cells is controlled to an important extent by glycerolipid formation and chain elongation.  相似文献   

20.
Oxytocin at a physiological concentration stimulated the immediate release of free arachidonic acid from dispersed human decidual cells in a perfusion system. This indicates that oxytocin activates phospholipase(s) thus enhancing prostaglandin synthesis. The effect of oxytocin on the release of [3H]-arachidonic acid from decidual cells of women in labor was significantly greater (1036 +/- 207, mean dpm +/- SEM, n = 23) than from those of women not-in-labor (505 +/- 121 dpm, n = 12) or with endometrial cells of non-pregnant women (711 +/- 210 dpm, n = 18), and correlates well with reported oxytocin receptor concentrations in these tissues. These new findings are consistent with a role for endogenous oxytocin in stimulating prostaglandin synthesis at the onset of parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号