首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A case of hereditary nonspherocytic hemolytic anemia associated with partial erythrocyte PFK deficiency without muscular symptoms is reported: erythrocyte enzyme activity in the propositus was 60% of normal. Kinetic studies of erythrocyte PFK revealed increased sensitivity to ATP inhibition and decreased sensitivity to citrate inhibition.Muscle PFK from the patient had a normal enzymatic activity, but was highly unstable to heat, dilution without stabilizer and urea; furthermore its starch gel electrophoretic mobility was markedly faster than the one of a normal control. The results suggested that a muscle type's subunit was deficient in the erythrocyte PFK.The authors hypothesize that there was no PFK deficiency in the patient's muscle because of the active synthesis of proteins by this tissue. In contrast, the deficiency of PFK would be easily detected in erythrocytes, because of the absence of protein synthesis.Attachée de recherche à l'INSERMChargé de recherche à l'INSERM  相似文献   

2.
1. The subunit proportions (L:M:C) of the PFK isozymes from normal adult erythrocytes were 2:86:12. Affected adult erythrocyte 6-phosphofructo-1-kinase (PFK) isozymes contained normal L-type (31%) and C-type (61%) subunits as well as a small amount (8%) of truncated M-type subunit. 2. When measured within 24 hr of birth, both normal and affected dog erythrocytes contained high PFK activities due to elevated levels of the L-type subunit. As the dogs matured, PFK activity decreased due to a greater than 99% loss of the L-type subunit. 3. By 2 weeks of age, the M-type and C-type subunits in normal dog PFK isozymes increased several-fold and attained near adult levels. 4. During post-natal development, the L-type subunit from affected dog erythrocytes decreased more rapidly than from normal dog erythrocytes; but it was maintained at a higher level in the affected adult erythrocytes. Also, in the affected dog erythrocytes, truncated M-type subunits were detected; and the initially high levels of the C-type subunit decreased approximately 50% after 4 weeks.  相似文献   

3.
U Giger  A M Kelly  P S Teno 《Enzyme》1988,40(1):25-29
Skeletal muscle from four dogs with erythrocyte phosphofructokinase (PFK; EC 2.7.1.11) deficiency were studied in vitro. Muscle PFK activities were severely decreased to 1% of the normal mean. The residual activities had a high Km for fructose-6-phosphate (F6P). Anaerobic lactate production of PFK-deficient muscle was minimal with the addition of glycogen and hexose-monophosphates, but was normal with fructose-1,6-diphosphate (FDP). Muscle glycogen concentration was twice normal, indicating a glycogen storage disorder. Histochemical studies for muscle PFK activity showed no enzymatic staining with F6P as substrate. In two muscle biopsies from asymptomatic related dogs, intermediate PFK activities were found. These data characterize canine muscle PFK deficiency in vitro.  相似文献   

4.
1. Erythrocytes in whole blood samples from dogs with phosphofructokinase (PFK) deficiency had lower 2,3-diphosphoglycerate (2,3-DPG) concentrations, higher ATP concentrations, and were more alkaline fragile than normal canine erythrocytes. 2. Reticulocytes from a PFK-deficient dog contained nearly three times the ATP concentration of normal canine erythrocytes, and had 2,3-DPG concentrations similar to normal canine erythrocytes. 3. PFK-deficient reticulocytes are not alkaline fragile. 4. The erythrocyte 2,3-DPG concentration in whole blood samples from PFK-deficient dogs was increased to normal by in vitro incubation with dihydroxyacetone, pyruvate and phosphate. This incubation resulted in only a slight increase in ATP concentration. 5. The alkaline fragility of these 2,3-DPG replenished PFK-deficient erythrocytes was normal. 6. Findings in this study indicate that the increased alkaline fragility of canine PFK-deficient erythrocytes is the result of decreased intracellular 2,3-DPG concentration.  相似文献   

5.
J Etiemble  J Simeon  C Picat  P Boivin 《Enzyme》1979,24(1):61-66
Phosphofructokinase (PFK) isozymes of blood cells and some human tissues were studied by starch gel electrophoresis and immunoprecipitation by anti-muscle and anti-erythrocyte PFK sera. PFK from muscle, heart, brain and placenta were totally precipitated by both antisera. PFK from blood cells (erythrocytes, lymphocytes, granulocytes, platelets) were precipitated more strongly by anti-erythrocyte PFK serum than by anti-muscle PFK serum. Liver, kidney and monoblast PFK were slightly precipitated by both antisera. From the electrophoretic patterns and the immunoprecipitation curves we may conclude that muscle contains the homotetrameric M4 forms; platelet, liver and kidney the homotetrameric E4 form, and blood cells the M-E hybrids. Monoblasts probably contain a E4 type PFK precursor, and heart, placenta and brain, a modified M4 type PFK. Other isozymes, unrelated with muscle and erythrocyte, were revealed in liver and kidney.  相似文献   

6.
(1) A systematic investigation was carried out into the use of time-expired erythrocytes in an isolated perfused skeletal muscle preparation. Comparisons were made between erythrocytes subjected to a process of 'rejuvenation' (Rennie and Holloszy (1977), Biochem. J. 168, 161-170) and untreated erythrocytes (controls). (2) The use of rejuvenated erythrocytes had no significant effect on concentrations of muscle ATP, phosphocreatine and lactate, nor fractional rates of muscle protein synthesis. However, muscle water concentrations were reduced when compared to controls. (3) There was an influx of K+ from the plasma into rejuvenated erythrocytes. This was accompanied by a substantial loss (17%) of intramuscular K+. There was also loss of K+ from control preparations but this amounted to approx. 1% of muscle content. (4) Erythrocyte fragility was greater in the control perfusate (6%, haemolysis) when compared to the medium with rejuvenated cells (1%, haemolysis). As a consequence of either erythrocyte storage, rejuvenation or haemolysis, plasma concentrations of phosphate, magnesium, calcium and potassium were significantly different from starting values, by as much as 300% in both groups, and varied throughout the study. (5) It is concluded that the use of rejuvenated erythrocytes does not confer any advantage in unexercised perfused skeletal muscle preparations. However, both types of erythrocyte induce changes in perfusate composition relative to starting or in vivo profiles.  相似文献   

7.
The 'Mediterranean' variant of glucose-6-phosphate dehydrogenase (G6PD) deficiency is due to the C563CT point mutation, leading to replacement of Ser with Phe at position 188, resulting in acute haemolysis triggered by oxidants. Previous work has shown increased formation of altered aspartate residues in membrane proteins during cell ageing and in response to oxidative stress in normal erythrocytes. These abnormal residues are specifically recognized by the repair enzyme L-isoaspartate (d-aspartate) protein O-methyltransferase (PCMT; EC 2.1.1.77). The aim of this work was to study the possible involvement of protein aspartate damage in the mechanism linking the G6PD defect and erythrocyte injury, through oxidative stress. Patients affected by G6PD deficiency (Mediterranean variant) were selected. In situ methylation assays were performed by incubating intact erythrocytes in the presence of methyl-labelled methionine. Altered aspartate residues were detected in membrane proteins by methyl ester quantification. We present here evidence that, in G6PD-deficient erythrocytes, damaged residues are significantly increased in membrane proteins, in parallel with the decay of pyruvate kinase activity, used as a cell age marker. Erythrocytes from patients were subjected to oxidative stress in vitro, by treatment with t-butylhydroperoxide, monitored by a rise in concentration of both methaemoglobin and thiobarbituric acid-reactive substances. L-Isoaspartate residues increased dramatically in G6PD-deficient erythrocytes in response to such treatment, compared with baseline conditions. The increased susceptibility of G6PD-deficient erythrocytes to membrane protein aspartate damage in response to oxidative stress suggests the involvement of protein deamidation/isomerization in the mechanisms of cell injury and haemolysis.  相似文献   

8.
In an earlier study, we observed a marked accumulation of antimony in erythrocytes of rats administered potassium antimony tartrate (Sb) in drinking water. This observation has raised concerns of possible adverse effects on the hematological systems. A study was therefore carried out to investigate the effects of Sb on phosphofructokinase (PFK), a rate-limiting enzyme of erythrocyte glycolysis. Preincubation of PFK with Sb caused a marked inhibition of the enzyme with 95% loss of activity at 5 mM. In comparison, 5 mM sodium arsenite, a known enzyme inhibitor, reduced PFK activity by only 38%. Increasing the concentrations of fructose-6-phosphate (F6P) or magnesium had no effects on the inhibitory potency of Sb. Varying the concentrations of ATP and Sb produced a complex effect on PFK activity. At 1 mM ATP, 0.2 mM Sb was required for 50% inhibition (IC50) of PFK but only 0.05 mM Sb was required for the same inhibition when the concentration of ATP was reduced to 0.2 mM. Glutathione (2–10 mM) and hemoglobin (8–40 <μ > M) partially protected the enzyme from the Sb effect, with the protection being more effective at low antimony concentrations. When Sb was added to assay mixtures after initiation of a PFK reaction with physiological concentrations of ATP (0.2 mM) and F6P (0.1 mM), PFK activity was approximately 50% inhibited by 0.5 mM Sb and completely inhibited by 5 mM Sb. In contrast, glucose utilization in whole blood was only 16% lower over an 8 hour incubation period in the presence of 5 mM Sb. It is concluded that while PFK is markedly inhibited by Sb under in vitro assay conditions, glycolysis in erythrocytes is not significantly affected except at very high Sb concentrations. The weak effect of Sb on glycolysis in erythrocytes may be due in part to the protective effect of hemoglobin and, to a lesser extent, glutathione on PFK. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 227–233, 1998  相似文献   

9.
Human erythrocyte and muscle phosphofructokinase (PFK) were purified completely by improved procedures. SDS-acrylamide gel electrophoresis in a discontinuous buffer system revealed two subunits (R and M) of erythrocyte PFK, the slower one (M) corresponding to the single subunit of muscle PFK. The staining intensity ratio R:M of the two bands of erythrocyte PFK was 2:1 or less. This suggests that native erythrocyte PFK contains multiple isoenzymes with different proportions of R and M, some being lost during purification. Nevertheless, isoelectric focusing showed single peaks of erythrocyte PFK (pI 5.0) and muscle PFK (pI 6.6), perhaps because of aggregation of erythrocyte PFK isoenzymes. Erythrocyte PFK from a patient with muscle PFK deficiency had a pI of 4.6 and could not be precipitated by antiserum against muscle PFK, findings compatible with the putative structure R4.  相似文献   

10.
Summary Measurement of erythrocyte phosphofructokinase (PFK) activity in Down's syndrome failed to confirm the nearly 50% increase reported by others. An increase of 29% was found, while leukocyte PFK activity was normal. Erythrocyte PFK differs immunochemically from platelet and leukocyte PFK, and the enzyme is probably genetically heterogeneous; therefore, it remains possible that a structural gene for erythrocyte PFK is present on chromosome 21.This work was supported in part by grant FR-05355 (M.M.C.) and grant AM-12588 (R.B.L.) from the National Institutes of Health. Dr. Layzer is the recipient of Career Development Award NB-35310 from the National Institute of Neurological Diseases and Stroke.  相似文献   

11.
Summary Erythrocyte PFK activity 50–60% that of normal controls was found in a mother and her son, without muscular or hematological symptoms.The PFK activity of the mother's muscle was normal in fresh preparations and partially unstable to storage at 4°C. Electrophoresis of muscle PFK revealed two bands, one normal and one abnormal with an anodic mobility greater than normal. Both patients were characterized as heterozygotes for an unstable muscle PFK. Unstable M'subunits disappeared in erythrocytes which are old cells devoid of protein synthesis. Consequently an increased E/M subunit ratio leads to a distribution of the five isozymes different from that of normal erythrocytes. In these patients, we observed a loss of the M4 enzyme together with an increase in the E4 isozyme. The kinetic and immunologic data were compatible with these modifications. Isoelectric focusing of hemolysates from the two patients revealed an acidification of the main activity band, suggesting that an increase in E4 isozyme resulted in a change of the total electric charge.Unité de recherche d'enzymologie des cellules sanguines (INSERM U160 & ERA 573 du CNRS) Hôpital Beaujon 92118 Clichy Cedex, France  相似文献   

12.
Reduced and oxidized glutathione (GSH and GSSG), protein-bound glutathione, lipid peroxidation and antioxidant enzyme activities were determined in the erythrocyte lysates and membranes of type I and II alcoholics in order to clarify the effect of age-of-onset and the duration of the alcohol consumption on erythrocyte oxidant and antioxidant status. The osmotic fragility and susceptibility of the erythrocytes to haemolysis were also determined. Erythrocyte lipid peroxidation was significantly increased but, GSH and protein-bound GSH, GSH/GSSG ratio and antioxidant enzyme activities were markedly decreased in the erythrocytes of the alcoholic subgroups. Erythrocyte count and haemoglobin content in the blood of alcoholics were found to be decreased in accordance with the finding that erythrocytes were more fragile and less resistant to haemolysis particularly in type II alcoholics. The present study showed that ethanol-induced oxidative stress in erythrocytes can lead to haemolysis and membrane-specific injuries in erythrocytes of the alcoholic subtypes.  相似文献   

13.
The intracellular mechanisms involved in the regulation of creatine phosphokinase expression in the BC3H1 muscle-like cell line have been examined under conditions of enzyme induction and repression. In the presence of low serum concentrations, BC3H1 cells cease to grow and synthesize high levels of creatine phosphokinase. When differentiated BC3H1 cultures are exposed to media containing high serum concentrations, cell division is reinitiated and further induction of creatine phosphokinase is inhibited. Accumulation of creatine phosphokinase-mRNA appears to be intimately coupled to the state of growth of BC3H1 cells. Log phase cells do not contain detectable levels of translatable creatine phosphokinase-mRNA; however, following cessation of growth, creatine phosphokinase-mRNA accumulates in approximate proportion to the increase in creatine phosphokinase activity. Reinitiation of cell division in quiescent differentiated cultures results in the arrest of further accumulation of creatine phosphokinase-mRNA but does not inhibit the translation of pre-existing creatine phosphokinase-mRNA. Under conditions of enzyme repression, however, the newly synthesized creatine phosphokinase appears to be enzymatically inactive. These results indicate that the expression of the muscle phenotype in BC3H1 cells is regulated by components present in serum and that myogenic differentiation is at least partially reversible following re-entry of quiescent cells into the cell cycle.  相似文献   

14.
The possibility for the generation of activated oxygen species during the interaction between copper chloride and erythrocyte membranes was investigated. A chemiluminescent method for detecting superoxide radicals and hydrogen peroxide was used. It was found that the interaction of CuCl2 with erythrocyte membrane is accompanied with O-2 and H2O2 generation. On the base of this result it is proposed that the activated oxygen species generated by CuCl2-membrane interaction may be able to initiate peroxidative breakdown processes in erythrocytes eventually leading to haemolysis.  相似文献   

15.
Four individuals with complete absence of erythrocyte AMP deaminase have been discovered. The subjects appear to be perfectly healthy and there was no evidence of hemolysis. The deficiency was found only in erythrocytes and as expected, mononuclear cells and platelets showed normal level of activity. The activities of all the other purine metabolizing enzymes that were tested were normal. The deficiency is inherited as an autosomal recessive trait.  相似文献   

16.
Experiments were carried out to determine the effectiveness of steroid therapy in vitamin E-deficiency, as measured by autohemolysis of isolated RBC's body weight gain, serum creatine phosphokinase activity, and stabilization or labilization of isolated hepatic lysosomes. Results of such experiments would indicate whether triamcinolone acetonide could supplant vitamin E in vitamin E-deficiency states via its ability to stablize various membranes. Autohemolysis induced by vitamin E-deficiency could not be prevented by daily administration of triamcinolone. Daily dosages of 0.1 and 0.4 mg/kg (ip) triamcinolone given concomitantly with replacement vitamin E (at sufficient dosages to reverse the autohemolysis) resulted in an increased autohemolysis. No changes in lysosomal membrane fragility were noted when hepatic lysosomes were obtained from vitamin E-deficient rats with triamcinolone resulted in a greater attenuation of body-weight gain. Creatine phosphokinase levels were not augmented in vitamin E-deficient rats. Vitamin E-deficient rats supplemented with vitamin E and treated with triamcinolone, manifested an increase in creatine, phosphokinase. It was therefore concluded that although triamcinolone and vitamin E possess a common ability to stablize membranes and proteins, their mechanisms must be different since triamcinolone could not substitute for vitamin E in a deficiency state. Indeed, triamcinolone was found to be more toxic in the absence of vitamin E.  相似文献   

17.
The objective of this study was to determine whether patients with chronic obstructive lung disease (COPD) display differences in organization of the metabolic pathways and segments involved in energy supply compared with healthy control subjects. Metabolic pathway potential, based on the measurement of the maximal activity (V(max)) of representative enzymes, was assessed in tissue extracted from the vastus lateralis in seven patients with COPD (age 67 +/- 4 yr; FEV(1)/FVC = 44 +/- 3%, where FEV(1) is forced expiratory volume in 1 s and FVC is forced vital capacity; means +/- SE) and nine healthy age-matched controls (age 68 +/- 2 yr; FEV(1)/FVC = 75 +/- 2%). Compared with control, the COPD patients displayed lower (P < 0.05) V(max) (mol.kg protein(-1).h(-1)) for cytochrome c oxidase (COX; 21.2 +/- 2.0 vs. 28.7 +/- 2.2) and 3-hydroxyacyl-CoA dehydrogenase (HADH; 2.54 +/- 0.14 vs. 3.74 +/- 0.12) but not citrate synthase (CS; 2.20 +/- 0.16 vs. 3.19 +/- 0.5). While no differences between groups were observed in V(max) for creatine phosphokinase, phosphorylase (PHOSPH), phosphofructokinase (PFK), pyruvate kinase, and lactate dehydrogenase, hexokinase (HEX) was elevated in COPD (P < 0.05). Enzyme activity ratios were higher (P < 0.05) for HEX/CS, HEX/COX, PHOSPH/HADH and PFK/HADH in COPD compared with control. It is concluded that COPD patients exhibit a reduced potential for both the electron transport system and fat oxidation and an increased potential for glucose phosphorylation while the potential for glycogenolysis and glycolysis remains normal. A comparison of enzyme ratios indicated greater potentials for glucose phosphorylation relative to the citric acid cycle and the electron transport chain and glycogenolysis and glycolysis relative to beta-oxidation.  相似文献   

18.
Malaria parasite-infected erythrocytes exhibit enhanced glucose utilisation and 6-phospho-1-fructokinase (PFK) is a key enzyme in glycolysis. Here we present the characterisation of PFK from the human malaria parasite Plasmodium falciparum. Of the two putative PFK genes on chromosome 9 (PfPFK9) and 11 (PfPFK11), only the PfPFK9 gene appeared to possess all the catalytic features appropriate for PFK activity. The deduced PfPFK proteins contain domains homologous to the plant-like pyrophosphate (PPi)-dependent PFK β and α subunits, which are quite different from the human erythrocyte PFK protein. The PfPFK9 gene β and α regions were cloned and expressed as His6- and GST-tagged proteins in Escherichia coli. Complementation of PFK-deficient E. coli and activity analysis of purified recombinant proteins confirmed that PfPFK9β possessed catalytic activity. Monoclonal antibodies against the recombinant β protein confirmed that the PfPFK9 protein has β and α domains fused into a 200 kDa protein, as opposed to the independent subunits found in plants. Despite an overall structural similarity to plant PPi-PFKs, the recombinant protein and the parasite extract exhibited only ATP-dependent enzyme activity, and none with PPi. Unlike host PFK, the Plasmodium PFK was insensitive to fructose-2,6-bisphosphate (F-2,6-bP), phosphoenolpyruvate (PEP) and citrate. A comparison of the deduced PFK proteins from several protozoan PFK genome databases implicates a unique class of ATP-dependent PFK present amongst the apicomplexan protozoans.  相似文献   

19.
Primaquine and tafenoquine are the only licensed drugs with activity against Plasmodium vivax hypnozoites but cause haemolysis in patients with glucose–6–phosphate dehydrogenase (G6PD) deficiency. Malaria also causes haemolysis, leading to the replacement of older erythrocytes with low G6PD activity by reticulocytes and young erythrocytes with higher activity. Aim of this study was to assess the impact of acute malaria on G6PD activity. Selected patients with uncomplicated malaria were recruited in Bangladesh (n = 87), Indonesia (n = 75), and Ethiopia (n = 173); G6PD activity was measured at the initial presentation with malaria and a median of 176 days later (range 140 to 998) in the absence of malaria. Among selected participants (deficient participants preferentially enrolled in Bangladesh but not at other sites) G6PD activity fell between malaria and follow up by 79.1% (95%CI: 40.4 to 117.8) in 6 participants classified as deficient (<30% activity), 43.7% (95%CI: 34.2 to 53.1) in 39 individuals with intermediate activity (30% to <70%), and by 4.5% (95%CI: 1.4 to 7.6) in 290 G6PD normal (≥70%) participants. In Bangladesh and Indonesia G6PD activity was significantly higher during acute malaria than when the same individuals were retested during follow up (40.9% (95%CI: 33.4–48.1) and 7.4% (95%CI: 0.2 to 14.6) respectively), whereas in Ethiopia G6PD activity was 3.6% (95%CI: -1.0 to -6.1) lower during acute malaria. The change in G6PD activity was apparent in patients presenting with either P. vivax or P. falciparum infection. Overall, 66.7% (4/6) severely deficient participants and 87.2% (34/39) with intermediate deficiency had normal activities when presenting with malaria.These findings suggest that G6PD activity rises significantly and at clinically relevant levels during acute malaria. Prospective case-control studies are warranted to confirm the degree to which the predicted population attributable risks of drug induced haemolysis is lower than would be predicted from cross sectional surveys.  相似文献   

20.
The activity of glucose-6-phosphate dehydrogenase (G-6-PD) in leucocytes was studied for erythrocyte G-6-PD deficiency using 49 hemizygous males, 16 heterozygous females, and 19 normal controls. The mean G-6-PD activity in leucocytes of the affected neonates (9.2 +/- 5.4 units) and the children (11.2 +/- 5.3 units) were significantly lower than those of normal newborns (22.9 +/- 5.1 units, P less than 0.01). Seventy percent of the effected newborns and 58% of the children with G-6-PD deficiency had the leucocyte enzyme activity of less than 13 IU/10(9)WBC. The leucocyte enzyme activity (14.6 +/- 8.6 units) of 16 heterozygous G-6-PD deficient mothers was also lower than that of normal controls (23.1 +/- 7.0 units). The present study thus concludes that, in G-6-PD deficient Chinese, the enzyme defect is demonstrable not only in erythrocytes but also in leucocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号