首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The alga, Distigma proteus, isolated from industrial wastewater showed tolerance against Cd2+ (8.0 μg/ml), Cr6+ (12 μg/ml), Pb2+ (15 μg/ml) and Cu2+ (10 μg/ml). The metal ions slowed down the growth of the organism after 4–5 days of exposure. The reduction in cell population was 90% for Cu2+, 84% for Cd2+, 71% for Cr6+, and 63% for Pb2+ after 8 days of metal stress. The order of resistance to heavy metal, in terms of reduction in the cellular population, was Cu2+ > Cd2+ > Cr6+ > Pb2+. Chromium- and cadmium-processing capabilities of the alga were worked out for its potential use as a bioremediator of wastewater. The reduction in the amount of Cr6+ after 2, 4, 6 and 8 days of algal culture containing 5.0 μg Cr6+ ml−1 of culture medium was 77, 85, 92 and 97%, respectively. Distigma could also remove 48% Cd2+after 2 days, 68% after 4 days, 80% after 6 days and 90% after 8 days from the medium. The heavy metal uptake ability of Distigma can be exploited for metal detoxification and environmental clean-up operations.  相似文献   

2.
The antibacterial activity and acting mechanism of silver nanoparticles (SNPs) on Escherichia coli ATCC 8739 were investigated in this study by analyzing the growth, permeability, and morphology of the bacterial cells following treatment with SNPs. The experimental results indicated 10 μg/ml SNPs could completely inhibit the growth of 107 cfu/ml E. coli cells in liquid Mueller–Hinton medium. Meanwhile, SNPs resulted in the leakage of reducing sugars and proteins and induced the respiratory chain dehydrogenases into inactive state, suggesting that SNPs were able to destroy the permeability of the bacterial membranes. When the cells of E. coli were exposed to 50 μg/ml SNPs, many pits and gaps were observed in bacterial cells by transmission electron microscopy and scanning electron microscopy, and the cell membrane was fragmentary, indicating the bacterial cells were damaged severely. After being exposed to 10 μg/ml SNPs, the membrane vesicles were dissolved and dispersed, and their membrane components became disorganized and scattered from their original ordered and close arrangement based on TEM observation. In conclusion, the combined results suggested that SNPs may damage the structure of bacterial cell membrane and depress the activity of some membranous enzymes, which cause E. coli bacteria to die eventually.  相似文献   

3.
The gene encoding a xylanase from Geobacillus sp. 71 was isolated, cloned, and sequenced. Purification of the Geobacillus sp 7.1 xylanase, XyzGeo71, following overexpression in E. coli produced an enzyme of 47 kDa with an optimum temperature of 75°C. The optimum pH of the enzyme is 8.0, but it is active over a broad pH range. This protein showed the highest sequence identity (93%) with the xylanase from Geobacillus thermodenitrificans NG80-2. XyzGeo71 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10). XyzGeo71 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 7.0 to 11.0 for 6 h. Its activity was partially inhibited by Al3+ and Cu2+ but strongly inhibited by Hg2+. The enzyme follows Michaelis–Menten kinetics, with Km and Vmax values of 0.425 mg xylan/ml and 500 μmol/min.mg, respectively. The enzyme was free from cellulase activity and degraded xylan in an endo fashion. The action of the enzyme on oat spelt xylan produced xylobiose and xylotetrose.  相似文献   

4.
When the highly metal-resistant acidophilic heterotrophic strain, Acidiphilium symbioticum KM2, was incubated with two Escherichia coli strains, viz. S17-1 (pSUP106) and K12, on a medium that supported growth of these two divergent species of different habitats, E. coli transconjugants were isolated that contained novel plasmids and were resistant to Zn2+ (48 mM), Cu2+ (12 mM), Ni2+ (12 mM), chloramphenicol (50 μg/ml), and tetracycline (25 μg/ml). The transconjugant plasmids did not hybridize with any of the A. symbioticum KM2 plasmids. After curing of the plasmids, the transconjugants became sensitive to 12 mM Zn2+, 12 mM Cu2+, and 12 mM Ni2+, but remained chloramphenicol and tetracycline resistant—the phenotypic markers that were originally present in pSUP106. That a part of pSUP106 was integrated into the chromosome of the transconjugants was evident from the hybridization of pSUP106 with chromosomal DNA of the cured derivatives of the transconjugants. Further, the transconjugant plasmids hybridized only with the chromosomal DNA of E. coli S17-1 and not with the chromosomal DNA of A. symbioticum KM2 or E. coli K12, suggesting their host chromosomal origin. Thus, the present study describes a unique event of genetic rearrangements in the E. coli strain S17-1 (pSUP106), resulting in the formation of novel plasmids conferring metal-resistance phenotypes in the cell. Received: 5 April 2002 / Accepted: 5 July 2002  相似文献   

5.
Demidchik V  Sokolik A  Yurin V 《Planta》2001,212(4):583-590
Effects of Cu2+ on a non-specific conductance and H+-ATPase activity in the plasma membrane of the freshwater alga Nitella flexilis L. Agardh was studied using a conventional microelectrode voltage-clamp technique. We show that a Cu2+-induced increase in the non-specific conductance is related to the formation of pores in the plasma membrane. Pore formation is the result of unidentified chemical reactions, since the Q10 for the rate of increase of conductance over time was about 3. Various oxidants and antioxidants (10 mmol/l H2O2, 10 mmol/l ascorbate, 100 μg/ml superoxide dismutase, and 100 μg/ml catalase) did not alter Cu2+-induced changes in the plasma membrane conductance, suggesting that the effect of Cu2+ was unrelated to peroxidation of plasma-membrane lipids. In contrast, organic and inorganic Ca2+-channel antagonists (nifedipine, Zn2+, Cd2+, Fe2+, Ni2+) inhibited the Cu2+-induced non-specific conductance increase. This suggests that changes in Ca2+ influx underlie this effect of Cu2+. Decreasing the pH or the ionic strength of external solutions also inhibited the Cu2+-induced plasma-membrane conductance increase. Copper was also found to inhibit plasma-membrane H+-ATPase activity with half-maximal inhibition occurring at about 5–20 μmol/l and full inhibition at about 100–300 μmol/l. The Hill coefficient of Cu2+ inhibition of the H+-ATPase was close to two. Received: 8 December 1999 / Accepted: 16 August 2000  相似文献   

6.
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test and alkaline phosphatase activity assay were employed to assess the effects of mixed trace elements including Zn2+, Ca2+, and Mn2+ plus total flavonoids or icariin from Epimedium koreanum on the proliferation and differentiation of primary osteoblasts in vitro. The results indicated that icariin (0.1, 1, and 10 μmol/L) and total flavonoids (0.06, 0.6, and 6 μg/mL) inhibited the proliferation and promoted the differentiation of primary osteoblasts. Mixed trace elements including Zn2+, Ca2+, and Mn2+ (0.1, 1, and 10 μmol/L) inhibited the proliferation and promoted the differentiation at 0.1 and 1 μmol/L, but inhibited the differentiation at 10 μmol/L. The effects of mixed trace elements including Zn2+, Ca2+, and Mn2+ plus total flavonoids or icariin from E. koreanum on the proliferation and differentiation of primary osteoblasts in vitro are complicated, and both synergistic and antagonistic effects are generated. The results suggest that there may be a potential cooperative action between flavonoids and trace metal elements on the proliferation and differentiation of primary osteoblasts by forming metal complexes. The combination model between flavonoids and trace metal elements is a pivotal factor for switching the biological effects from toxicity to activity, from damage to protection.  相似文献   

7.
The G2ALT gene was cloned and sequenced from the thermophilic bacterium Anoxybacillus gonensis G2. The gene is 666 bp long and encodes a protein 221 amino acids in length. The gene was overexpressed in E. coli and purified to homogeneity and biochemically characterized. The enzyme has a molecular mass of 24.5 kDa and it could be classified as a member of the family of bacterial aluminium resistance proteins based on homology searches. When this fragment was expressed in E. coli, it endowed E. coli with Al tolerance to 500 μM. The purified G2ALT protein is active at a broad pH range (pH 4.0–10.0) and temperature range (25°C–80°C) with optima of 6.0 and the apparent optimal temperature of 73°C respectively. Under optimal conditions, G2ALT exhibited a low ATPase activity with K m and V max values of 10±0.55 μM and 26.81±0.13 mg Pi released/min/mg enzyme, respectively. The ATPase activity of G2ALT requires Mg2+ and Na+ ions, while Zn2+ and Al3+ stimulate the activity. Cd2+ and Ag+ reduced the activity and Li+, Cu2+, and Co2+ inhibited the activity. Known inhibitors of most ATPases, like such as β-mercaptoethanol and ouabain, also inhibited the activity of the G2ALT. These biochemical characterizations suggested that G2ALT belongs to the PP-loop ATPase superfamily and it can be responsible for aluminium tolerance in A. gonensis G2.  相似文献   

8.
Analysis of the structural properties of pCC3, a cryptic plasmid from Leuconostoc citreum C4 isolated from kimchi, determined its length as 3,338 bp and revealed three open reading frames (ORFs): ORF1–ORF3. ORF3 showed high homology with a replication initiation protein of the theta-type plasmid pTXL1. The fragment encompassing ORF3 and its upstream sequences (nt 1,299–1,634) was found to contain a functional plasmid replicon. A new shuttle vector, pUCC3E1, was constructed based on pCC3. Using Southern hybridization analysis, no single-stranded DNA intermediate was detected from Leu. citreum harboring pUCC3E1, which indicates that pCC3 replicated via the theta mechanism. The pUCC3E1 could be replicated in E. coli TG1 (5.8 × 104 CFU/μg DNA) and the developed cloning hosts, Leu. citreum C16 (2.1 × 102 CFU/μg DNA) and Leu. citreum GJ7 (8.0 × 101 CFU/μg DNA). pUCC3E1 was stably maintained in Leu. citreum C16 (for 100 generations, ca. 94.2%) in the absence of erythromycin (5 μg/ml).  相似文献   

9.
The reemergence of infectious diseases and the continuous development of multidrug resistance among a variety of disease-causing bacteria in clinical setting pose a serious threat to public health worldwide. Extended-spectrum β-lactamases (ESBLs) that mediate resistance to third-generation cephalosporin are now observed all over the world in all species of Enterobacteriaceae, especially Escherichia coli and Klebsiella pneumoniae. In this work, ZnO nanoparticles (NPs) were synthesized by the sol–gel method and characterized by powder X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The image of synthesized ZnO NPs appeared spherical in SEM with a diameter of ≈19 nm and as hexagonal crystal in AFM. Clinical isolates were assessed for ESBL production and shown to be sensitive to ZnO NPs by different methods such as minimal inhibitory concentration (MIC) and minimal bactericidal concentration, time-dependent growth inhibition assay, well diffusion agar methods and estimation of colony forming units (CFU) of bacteria. The lowest MIC value for E. coli and K. pneumoniae was found to be 500 μg/ml. The results showed that ZnO NPs at 1,000 μg/ml completely inhibit the bacterial growth. The antibacterial effect of ZnO nanoparticles was gradual, but time- and concentration-dependent. The maximum inhibition zone at100 μg/ml for E. coli and K. pneumoniae was 22 and 20 mm, respectively. With the increasing ZnO NP loading, there is significant reduction in the numbers of CFU. At the concentration of 1,000 μg/ml, the decline in per cent survival of E. coli and K. pneumoniae was found to be 99.3% and 98.6%, respectively.  相似文献   

10.
Responses of mycelia ofGanoderma lucidum to vanadium, selenium and germanium were examined over a wide range of concentrations (10–1, 120 μg/ml) in pure culture. Se and V were found to be highly toxic, but Ge was not toxic at the levels tested.Ganododerma lucidum cultivated on substrates of sawdust with V (30–80 μg/g) developed mature fruitbodies, but the bioaccumulation of V was quite low (2.5–7 μg/g in pileus, 12.5–21.5 μg/g in stipe and <1 μg/g in basidiospores). Se as Na2SeO4 labeled with75Se was effectively taken up from substrates and accumulated in fruitbodies (mainly in pileus), then depleted by discharge of basidiospores. Ge as GeCl4 labeled with77Ge was easily uptaken and translocated into fruitbodies.  相似文献   

11.
Production of Enterobifidin includes the stages of preparation of culture media, reparation of lyophilizedBifidobacterium adolescentis MS-42 culture, preparation of starters, cultivation of bacteria in fermenters, biomass conservation, and its biological control. The preparation contains physiologically active bifidobacterium cells with high activities of growth = 0.7 h−1,g = 1.0 h) and acid formation (titratable acidity is ∼120–140°T; acetate concentration, 0.50–0.75%; and lactate concentration, 0.33–0.50%). The antagonistic activity of these bacteria towardsEscherichia coli 08,E. coli 086,E. coli 015,E. coli 0115, andE. coli 0101 amounts to 98.2; toProteus vulgaris 102, to 87.2; andStaphylococcus aureus 209p, to 83.2%. The bifidobacteria (with a titer of ∼109 CFU/ml) remained viable for two to five months.  相似文献   

12.
Enterococcus hirae grow well under anaerobic conditions at alkaline pH (pH 8.0) producing acids by glucose fermentation. Bacterial growth was shown to be accompanied by decrease of redox potential from positive values (~+35 mV) to negative ones (~−220 mV). An oxidizer copper (II) ions (Cu2+) affected bacterial growth in a concentration-dependent manner (within the range of 0.05 mM to 1 mM) increasing lag phase duration and decreasing specific growth rate. These effects were observed with the wild-type strain ATCC9790 and the atpD mutant strain MS116 (with absent β subunit of F1 of the FoF1 ATPase) both. Also ATPase activity and proton–potassium ions exchange were assessed with and without N,N′-dicyclohexylcarbodiimide (DCCD), inhibitor of the FoF1 ATPase. In both cases (DCCD ±), even low Cu2+ concentrations had noticeable effect on ATPase activity, but with less visible concentration-dependent manner. Changes in the number of accessible SH-groups were observed with E. hirae ATCC9790 and MS116 membrane vesicles. In both strains Cu2+ markedly decreased the number of SH-groups in the presence of K+ ions. The addition of ATP increased the amount of accessible SH-groups in ATCC9790 and decreased this number in MS116; Cu2+ blocked ATP-installed increase in SH-groups number in ATCC9790. H+–K+-exchange of bacteria was markedly inhibited by Cu2+, but stronger effects were detected together with DCCD. Moreover, discrimination between Cu2+ and other bivalent cation—Ni2+ was shown. It is suggested that Cu2+ ions inhibit E. hirae cell growth by direct affect on the FoF1 ATPase leading to conformational changes in this protein complex and decrease in its activity.  相似文献   

13.
The antibacterial activity of ZnO nanoparticles has been investigated and presented in this paper. Nanoparticles were prepared via non-hydrolytic solution process using zinc acetate di-hydrate (Zn(CH3COO)2·2H2O) and aniline (C6H5NH2) in 6 h refluxing at ∼65 °C. In the presence of four pathogens such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae, the antibacterial study of zinc oxide nanoparticles were observed. The antibacterial activity of ZnO nanoparticles (ZnO-NPs) were studied by spectroscopic method taking different concentrations (5–45 μg/ml) of ZnO-NPs. Our investigation reveals that the lowest concentration of ZnO-NPs solution inhibiting the growth of microbial strain is found to be 5 μg/ml for K. pneumoniae, whereas for E. coli, S. aureus, and S. typhimurium, it was calculated to be 15 μg/ml. The diameter of each ZnO-NPs lies between “20 and 30 nm” as observed from FESEM and transmission electron microscopy images. The composition of synthesized material was analyzed by the Fourier transform infrared spectroscopy, and it shows the band of ZnO at 441 cm−1. Additionally, on the basis of morphological and chemical observations, the chemical reaction mechanism of ZnO-NPs was also proposed.  相似文献   

14.
Low voltage-activated, rapidly inactivating T-type Ca2+ channels are found in a variety of cells, where they regulate electrical activity and Ca2+ entry. In whole-cell patch-clamp recordings from mouse spermatogenic cells, trace element copper (Cu2+) inhibited T-type Ca2+ current (I T-Ca) with IC50 of 12.06 μM. Inhibition of I T-Ca by Cu2+ was concentration-dependent and mildly voltage-dependent. When voltage stepped to −20 mV, Cu2+ (10 μM) inhibited I T-Ca by 49.6 ± 4.1%. Inhibition of I T-Ca by Cu2+ was accompanied by a shift of −2.23 mV in the voltage dependence of steady-state inactivation. Cu2+ upshifted the current–voltage (I-V) curve. To know the change of the gating kinetics of T-type Ca2+ channels, we analyzed the effect of Cu2+ on activation, inactivation, deactivation and reactivation of T-type Ca2+ channels. Since T-type Ca2+ channels are a key component in capacitation and the acrosome reaction, our data suggest that Cu2+ can affect male reproductive function through T-type Ca2+ channels as a preconception contraceptive material.  相似文献   

15.
In order to explore compounds naturallly inhibitory to shrimp pathogenic vibrios, a culture filtrate of Pseudomonas sp. W3 at a pH of 2 was extracted with ethyl acetate (EtOAc) to produce 82.15 mg/l of a yellow–brown extract (EtOAc-W3) that had MIC values of 225-450 μg/ml against the growth of 18 shrimp pathogenic Vibrio harveyi strains. The MIC of EtOAc-W3 against the most pathogenic strain PSU 2015 was 450 μg/ml and this strain had the lowest LD50 (50% lethal dose) to pacific white shrimp (Litopenaeus vannamei, PL 21). At this MIC value, EtOAc-W3 in artificial sea water (ASW) killed strain PSU 2015; however in natural sea water, only a partial growth inhibition was observed. The toxicity to pacific white shrimp and antivibrio activity of the EtOAc-W3 were investigated by conducting an experiment with 4 sets; native control (commercial ASW), EtOAc-W3 control (MIC/10, 45 μg/ml), challenge (inoculation 6.0 × 106 c.f.u./ml PSU 2015) and treatment (6.0 × 106 c.f.u./ml PSU 2015 + 45 μg/ml EtOAc-W3). The same experiment was repeated by increasing the dose of EtOAc-W3 to 90 μg/ml (MIC/5). Both concentrations of EtOAc-W3 tested had no toxicity to postlarval shrimps. A significant decrease in shrimp mortality was observed over a 72 h period as approximately 80% of the shrimps died in each challenge set but only 63 and 23% died in the presence of 45 and 90 μg/ml EtOAc-W3. The major component of EtOAc-W3 was supposed to be 2-heptyl-4-quinolone (HHQ) by FAB-MS and 1H-NMR analyses of the purified fraction.  相似文献   

16.
The l-phenylalanine (l-Phe) production by Escherichia coli WSH-Z06 (pAP-B03) was frequently prevented by bacteriophage BP-1 infestation. To cope with the bacteriophage BP-1 problem for an improved l-Phe production, one bacteriophage BP-1-resistant mutant, E. coli BR-42, was obtained from 416 mutant colonies of E. coli WSH-Z06 after N-methyl-N’-nitro-N-nitrosoguanidine (NTG) mutagenesis by selection for resistance to bacteriophage BP-1. The recombinant E. coli BR-42-carrying plasmid pAP-B03 had a high capacity in l-Phe production and a remarkable tolerance to 1 × 1010 pfu (plaque-forming unit)/ml bacteriophage stock. For an enhanced l-Phe production by E. coli BR-42 (pAP-B03), the effects of different feeding strategies including pH–stat, constant rate feeding, linear decreasing rate feeding, and exponential feeding on l-Phe production were investigated; and a two-stage feeding strategy, namely exponential feeding at μ set = 0.18 h−1 in the first 20 h and a following linear varying rate feeding with F = (−0.55 × t + 18.6) ml/h, was developed to improve l-Phe production. With this two-stage feeding approach, a maximum l-Phe titer of 57.63 g/l with a high l-Phe productivity (1.15 g/l/h) was achieved, which was 15% higher than the highest level (50 g/l) reported so far according to our knowledge. The recombinant E. coli BR-42 (pAP-B03) is a potential l-Phe over-producer in substantial prevention of bacteriophage BP-1 infestation compared to its parent strain WSH-Z06 (pAP-B03).  相似文献   

17.
Plant growth promoting Pantoea agglomerans NBRISRM (NBRISRM) was able to produce 60.4 μg/ml indole acetic acid and solubilize 77.5 μg/ml tri-calcium phosphate under in vitro conditions. Addition of 2% NaCl (w/v) in the media induced the IAA production and phosphate solubilization by 11% and 7%, respectively. For evaluating the plant growth promotory effect of NBRISRM inoculation a micro plot trial was conducted using maize and chickpea as host plants. The results revealed significant increase in all growth parameters tested in NBRISRM inoculated maize and chickpea plants, which were further confirmed by higher macronutrients (N, P and K) accumulation as compared to un-inoculated controls. Throughout the growing season of maize and chickpea, rhizosphere population of NBRISRM were in the range 107–108 CFU/g soil and competing with 107–109 CFU/g soil with heterogeneous bacterial population. Functional richness, diversity, and evenness were found significantly higher in maize rhizosphere as compared to chickpea, whereas NBRISRM inoculation were not able to change it, in both crops as compared to their un-inoculated control. To the best of our knowledge this is first report where we demonstrated the effect of P. agglomerans strain for improving maize and chickpea growth without altering the functional diversity.  相似文献   

18.
In this work, a recombinant Escherichia coli was constructed by overexpressing glucosamine (GlcN) synthase and GlcN-6-P N-acetyltransferase for highly efficient production of GlcN and N-acetylglucosamine (GlcNAc). For further enhancement of GlcN and GlcNAc production, the effects of different glucose feeding strategies including constant-rate feeding, interval feeding, and exponential feeding on GlcN and GlcNAc production were investigated. The results indicated that exponential feeding resulted in relatively high cell growth rate and low acetate formation rate, while constant feeding contributed to the highest specific GlcN and GlcNAc production rate. Based on this, a multistage glucose supply approach was proposed to enhance GlcN and GlcNAc production. In the first stage (0–2 h), batch culture with initial glucose concentration of 27 g/l was conducted, whereas the second culture stage (2–10 h) was performed with exponential feeding at μ set = 0.20 h−1, followed by feeding concentrated glucose (300 g/l) at constant rate of 32 ml/h in the third stage (10–16 h). With this time-variant glucose feeding strategy, the total GlcN and GlcNAc yield reached 69.66 g/l, which was enhanced by 1.59-fold in comparison with that of batch culture with the same total glucose concentration. The time-dependent glucose feeding approach developed here may be useful for production of other fine chemicals by recombinant E. coli.  相似文献   

19.
The heavy metal resistant ciliate, Stylonychia mytilus, isolated from industrial wastewater has been shown to be potential bioremediator of contaminated wastewater. The ciliate showed tolerance against Zn2+ (30 μg/mL), Hg2+ (16 μg/mL) and Ni2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared with the culture grown without metal stress. The reduction in cell population was 46% for Cd2+, 38% for Hg2+, 23% for Zn2+, 39% for Cu2+ and 51% for Ni2+ after 8 days of metal stress. S. mytilus reduced 91% of Cd2+, 90% of Hg2+ and 98% of Zn2+ from the medium after 96 h of incubation in a culture medium containing 10 μg/mL of the respective metal ions. Besides this, the ciliate could also remove 88% of Cu2+ and 73% Ni2+ from the medium containing 5 μg/mL of each metal after 96 h. The ability of Stylonychia to take up variety of heavy metals from the medium could be exploited for metal detoxification and environmental clean-up operations.  相似文献   

20.
In the present study, we investigated the possible involvement of oxidative stress in ciprofloxacin-induced cytotoxicity against several reference bacteria including Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, and clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). Oxidative stress was assessed by measurement of hydrogen peroxide generation using a FACScan flow cytometer. The antibacterial activity of ciprofloxacin was assessed using the disk diffusion method and by measuring the minimum inhibitory concentration (MIC). Ciprofloxacin induced a dose-dependent antibacterial activity against all bacteria where the highest tested concentration was 100 ug/ml. Results revealed that E. coli cells were highly sensitive to ciprofloxacin (MIC = 0.21 μg/mL ± 0.087), P. aeruginosa and S. aureus cells were intermediately sensitive (MIC = 5.40 μg/mL ± 0.14; MIC = 3.42 μg/mL ± 0.377, respectively), and MRSA cells were highly resistant (MIC = 16.76 μg/mL ± 2.1). Pretreatment of E. coli cells with either vitamin E or vitamin C has significantly protected cells against ciprofloxacin-induced cytotoxicity. These results indicate the possible antagonistic properties for vitamins C or E when they are used concurrently with ciprofloxacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号