首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.

Background

Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways.

Results

Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression.

Conclusions

The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21.  相似文献   

3.
4.
Protein expression in Down syndrome brain   总被引:5,自引:0,他引:5  
Engidawork E  Lubec G 《Amino acids》2001,21(4):331-361
Down syndrome (DS) is the most common chromosomal abnormality associated with early mental retardation and neurological abnormalities followed by precocious age dependent Alzheimer-type neurode generation later in life. Knowledge of the pathological mechanisms involved in DS is far from complete, but overexpression of genes residing in chromosome 21 was considered to be the central point for the DS phenotype. In this regard, beta amyloid precursor protein (APP), CuZn superoxide dismutase (SOD1) and S100beta have been implicated in causing apoptosis, a mechanism thought to be responsible for neuronal loss in DS, in one way or another. The gene dosage hypothesis has been challenged, however, and dysregulation of expression of genes located on other chromosomes has been described, which may well be secondary to chromosomal imbalance or a direct consequence of the disease process. The present review focuses on the protein expression profile in DS and we postulate that abnormalities in the coordinated expression, as well as interaction of proteins may be responsible for the neuropathology of DS. A series of candidate proteins are discussed that may be directly causing or reflecting the DS phenotype, in particular the brain abnormalities in DS.  相似文献   

5.
An extra copy of human chromosome 21 (Chr 21) causes Down syndrome (DS), which is characterized by mental retardation and congenital heart disease (CHD). Chimeric mice containing Chr 21 also exhibit phenotypic traits of DS including CHD. In this study, to identify genes contributing to DS phenotypes, we compared the overall protein expression patterns in hearts of Chr 21 chimeras and wild type mice by two-dimensional electrophoresis. The endogenous mouse atrial specific isoform of myosin light chain-2 (mlc-2a) protein was remarkably downregulated in the hearts of chimeric mice. We also confirmed that the human MLC-2A protein level was significantly lower in a human DS neonate heart, as compared to that of a normal control. Since mouse mlc-2a is involved in heart morphogenesis, our data suggest that the downregulation of this gene plays a crucial role in the CHD observed in DS. The dosage imbalance of Chr 21 has a trans-acting effect which lowers the expression of other genes encoded elsewhere in the genome.  相似文献   

6.
Summary.  Down syndrome (DS) is the most common genetic cause of mental retardation. To explain the impact of extra chromosome 21 in the pathology of DS, gene dosage effect hypothesis has been proposed, but several investigators including our group have challenged this hypothesis. Although analysis of the sequence of chromosome 21 has been essentially completed, the molecular and biochemical mechanisms underlying the pathology are still unknown. We therefore investigated expression levels of six proteins encoded on chromosome 21 (HACS1, DYRK1A, αA-crystallin, FTCD, GARS-AIRS-GART, and CBS) in fetal cerebral cortex from DS and controls at 18–19 weeks of gestational age using Western blot analysis. Protein expression of HACS1 was significantly and remarkably decreased in DS, and the expression levels of five proteins were comparable between DS and controls suggesting that the gene dosage effect hypothesis is not sufficient to fully explain the DS phenotype. We are continuing to quantify proteins whose genes are encoded on chromosome 21 in order to provide a better understanding of the pathobiochemistry of DS at the protein level. Received July 1, 2002 Accepted July 19, 2002 Published online November 14, 2002 Acknowledgement This work was supported, in part (Dr. D. Patterson), by the National Institute of Child Health and Human Development (NICHD; HD17449). Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK), Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: DS, Down syndrome; HACS1, hematopoietic adapter containing Src homology 3 domain and sterile α motifs; DYRK1A, dual specificity tyrosine phosphorylated and regulated kinase; αA-crystallin, alpha crystallin subunit A; FTCD, formi-minotransferase cyclodeaminase; GARS-AIRS-GART, glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide formyltransferase; CBS, cystathionine β-synthase; NSE, neuron specific enolase; GFAP, glial fibrillary acidic protein  相似文献   

7.
Down syndrome is the most common birth defect, which is causedby trisomy 21. We identified a novel gene in the so-called Downsyndrome critical region by EST mapping to genomic DNA and followingcDNA cloning. The gene, designated DCRB (Down syndrome CriticalRegion gene B), consisted ofthree exons of1095 bp in total andencoded a large open reading frame of118 amino acid residues.The amino acids sequence ofDCRB showed no significant homologyto any known protein. Northern blot analysis showed that DCRBis mainly expressed in the placenta, in which a major 1.1-kbband and a minor 2.0-kb band were detected. Minor bands of 1.4kb and 2.2 kb were also detected in adult heart and skeletalmuscle.  相似文献   

8.
Down syndrome (DS) is one of the most common causes of intellectual disability, owing to trisomy of all or part of chromosome 21. DS is also associated with the development of Alzheimer disease (AD) neuropathology after the age of 40 years. To better clarify the cellular and metabolic pathways that could contribute to the differences in DS brain, in particular those involved in the onset of neurodegeneration, we analyzed the frontal cortex of DS subjects with or without significant AD pathology in comparison with age-matched controls, using a proteomics approach. Proteomics represents an advantageous tool to investigate the molecular mechanisms underlying the disease. From these analyses, we investigated the effects that age, DS, and AD neuropathology could have on protein expression levels. Our results show overlapping and independent molecular pathways (including energy metabolism, oxidative damage, protein synthesis, and autophagy) contributing to DS, to aging, and to the presence of AD pathology in DS. Investigation of pathomechanisms involved in DS with AD may provide putative targets for therapeutic approaches to slow the development of AD.  相似文献   

9.
Derivation of a formula for determination of proportion of paternal trisomy 21 is presented. The formula can be applied for the literature data on sex ratio in the cases of paternal and maternal origin of the extra chromosome in the populations where direct studies of its origin can not be performed.  相似文献   

10.

INTRODUCTION:

Down syndrome (DS), the leading genetic cause of mental retardation, stems from non-disjunction of chromosome 21.

AIM:

Our aim was to discern non-disjunction in DS patients by genotyping GluK1-(AGAT)n and D21S2055-(GATA)n microsatellites on chromosome 21 using a family-based study design.

MATERIALS AND METHODS:

We have used a PCR and automated DNA sequencing followed by appropriate statistical analysis of genotype data for the present study

RESULTS AND DISCUSSION:

We show that a high power of discrimination and a low probability of matching indicate that both markers may be used to distinguish between two unrelated individuals. That the D21S2055-(GATA)n allele distribution is evenly balanced, is indicated by a high power of exclusion [PE=0.280]. The estimated values of observed heterozygosity and polymorphism information content reveal that relative to GluK1-(AGAT)n[Hobs=0.286], the D21S2055- (GATA)n[Hobs=0.791] marker, is more informative. Though allele frequencies for both polymorphisms do not conform to Hardy-Weinberg equilibrium proportions, we were able to discern the parental origin of non-disjunction and also garnered evidence for triallelic (1:1:1) inheritance. The estimated proportion of meiosis-I to meiosis-II errors is 2:1 in maternal and 4:1 in paternal cases for GluK1-(AGAT)n, whereas for D21S2055-(GATA)n, the ratio is 2:1 in both maternal and paternal cases. Results underscore a need to systematically evaluate additional chromosome 21-specific markers in the context of non-disjunction DS.  相似文献   

11.
Cheon MS  Kim SH  Yaspo ML  Blasi F  Aoki Y  Melen K  Lubec G 《Amino acids》2003,24(1-2):111-117
Summary.  Down syndrome (DS) is the most significant genetic disorder with mental retardation and is caused by trisomy 21. The phenotype of DS is thought to result from overexpression of a gene(s) located on the triplicated chromosome (region). An increasing body of evidence that challenge this “gene dosage effect” hypothesis, however, has been reported indicating that this hypothesis still remains to be elucidated. The availability of the complete sequence of genes on chromosome 21 could have an immediate impact on DS research, but no conclusions can be drawn from nucleic acid levels. This made us evaluate protein levels of six proteins, gene products, encoded on chromosome 21 (T-cell lymphoma invasion and metastasis inducing Tiam1 protein, holocarboxylase synthetase, human interferon-regulated resistance GTP-binding protein MxA, Pbx regulating protein 1, autoimmune regulator, and pericentrin) in fetal cortex from DS and controls at 18–19 weeks of gestational age using Western blot technique. None of the investigated proteins showed overexpression in DS compared to controls. Our present data showing unaltered expression of six proteins on chromosome 21 in fetal DS brain suggest that the existence of the trisomic state is not involved in abnormal development of fetal DS brain and that the gene dosage effect hypothesis is not sufficient to fully explain the DS phenotype. We are in the process of quantifying all gene products of chromosome 21 and our first results do not support the gene dosage hypothesis. Received June 27, 2002 Accepted July 19, 2002 Published online November 14, 2002 Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK), Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: AIRE, autoimmune regulator; DS, Down syndrome; HCS, holocarboxylase synthetase; Prep1, Pbx regulating protein 1; Tiam1, T-cell lymphoma invasion and metastasis 1  相似文献   

12.
Summary.  Down syndrome (DS) is the most frequent genetic disorder with mental retardation and caused by trisomy 21. Although the gene dosage effect hypothesis has been proposed to explain the impact of extra chromosome 21 on the pathology of DS, a series of evidence that challenge this hypothesis has been reported. The availability of the complete sequences of genes on chromosome 21 serves now as starting point to find functional information of the gene products, but information on gene products is limited so far. We therefore evaluated expression levels of six proteins whose genes are encoded on chromosome 21 (synaptojanin-1, chromosome 21 open reading frame 2, oligomycin sensitivity confering protein, peptide 19, cystatin B and adenosine deaminase RNA-specific 2) in fetal cerebral cortex from DS and controls at 18–19 weeks of gestational age using Western blot analysis. Synaptojanin-1 and C21orf2 were increased in DS, but others were comparable between DS and controls, suggesting that the DS phenotype cannot be simply explained by gene dosage effects. We are systematically quantifying all proteins whose genes are encoded on chromosome 21 in order to provide a better understanding of the pathobiochemistry of DS at the protein level. These studies are of significance as they show for the first time protein levels that are carrying out specific function in human fetal brain with DS. Received August 12, 2002 Accepted September 12, 2002 Published online January 30, 2003 Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK) Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: ADAR2, adenosine deaminase RNA-specific 2; C21orf2, chromosome 21 open reading frame 2; DS, Down syndrome; NSE, neuron specific enolase; OSCP, oligomycin sensitivity conferring protein; PEP-19, peptide 19  相似文献   

13.
Cheon MS  Shim KS  Kim SH  Hara A  Lubec G 《Amino acids》2003,25(1):41-47
Summary.  Down syndrome (DS) is the most frequent genetic disorder with mental retardation and caused by trisomy 21. Although the molecular mechanisms of the various phenotypes of DS could be due to overexpression of gene(s) on chromosome 21, several groups have challenged this gene dosage effect hypothesis. The near completion of the sequencing of human chromosome 21 provides unprecedented opportunities to understand the molecular pathology of DS, however, functional information on gene products is limited so far. We therefore evaluated the levels of six proteins whose genes are encoded on chromosome 21 (trefoil factor 1, trefoil factor 2, trefoil factor 3, coxsackie virus and adenovirus receptor, carbonyl reductase 1 and interferon-α receptor) in fetal cerebral cortex from DS and controls at the early second trimester using Western blot analysis. None of the investigated proteins showed overexpression in DS compared to controls suggesting that these proteins are not involved in abnormal development of fetal DS brain and that DS phenotype can not be simply explained by the gene dosage effect hypothesis. We are systematically quantifying all proteins whose genes are encoded on chromosome 21 and these studies may provide a better understanding of genotype-phenotype correlation in DS. Received November 28, 2002 Accepted March 10, 2003 Acknowledgements's of Hospital of Philadelphia, PA, (USA) and Biogen, Inc. (anti-IFNAR-1 antibody; Cambridge, USA) for kindly providing the antibodies and comments. Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK), Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: AD, Alzheimer's disease; CAR, coxsackievirus and adenovirus receptor; CBR1, carbonyl reductase 1; CNS, central nervous system; DS, Down syndrome; IFNs, interferons; IFNAR-1, interferon-α receptor; NSE, neuron specific enolase; TFF, trefoil factor  相似文献   

14.
Down syndrome (DS) resulting from free trisomy 21 (FT21) has been largely associated with advanced maternal age. However, approximately 60% of FT21 cases are born to young couples. Thus, the etiological factors responsible for these FT21 children must differ from those proposed for maternal age-related FT21. These factors have not been defined. In this study, we analyzed the chromosomes of peripheral blood lymphocytes from three groups of couples aged ≤35 years, to identify chromosomal trisomies: Group I included 5 couples with normal offspring; Group II included 22 couples with one FT21 child; and Group III consisted of 3 couples with recurrent FT21. A total of 13,809 metaphases were analyzed with G-banding and 60,205 metaphases were analyzed with FISH using a 13/21 centromeric probe. Aneuploidy was significantly more frequent in Groups II and III. The frequencies of hyperdiploid cells were 0.19, 0.49 and 0.96% in Groups I–III, respectively. FISH analysis showed that trisomy 21 cell percentages were 0.08, 0.21 and 0.76 for Groups I–III, respectively, and were very similar to those obtained with G-banding. Trisomy 21 mosaicism was found in 2/22 couples with one FT21 offspring, and in 2/3 couples with recurrent FT21. Our data suggest that mosaicism is an important cause of FT21 offspring in young couples, and that aneuploidy is more frequent among couples with FT21 offspring. This may be related with age and other undetermined intrinsic and extrinsic factors.  相似文献   

15.
Congenital heart disease (CHD) is a major clinical manifestation of Down syndrome (DS). We recently showed that chimeric mice containing a human chromosome 21 (Chr 21) exhibited phenotypic traits of DS, including CHD. Our previous study showed that myosin light chain-2a (mlc2a) expression was reduced in the hearts of chimeric mice and DS patients. We found that phosphatidylethanolamine binding protein (PEBP) was also downregulated in Chr 21 chimeras in this study. As mlc2a is involved in heart morphogenesis, and PEBP controls the proliferation and differentiation of different cell types, these genes are candidates for involvement in DS-CHD. The DS-CHD candidate region has been suggested to span between PFKL and D21S3, which is the STS marker near the ETS2 loci. To identify gene(s) or a gene cluster on Chr 21 responsible for the downregulation of mlc2a and PEBP, we fragmented Chr 21 at the EST2 loci, by telomere-directed chromosome truncation in homologous recombination-proficient chicken DT40 cells. The modified Chr 21 was transferred to mouse ES cells by microcell-mediated chromosome transfer (MMCT), via CHO cells. We used ES cell lines retaining the Chr 21 truncated at the ETS2 locus (Chr 21E) to produce chimeric mice and compared overall protein expression patterns in hearts of the chimeras containing the intact and the fragmented Chr 21 by two-dimensional electrophoresis. While mouse mlc2a and PEBP expression was downregulated in the chimeras containing the intact Chr 21, the expression was not affected in the Chr 21E chimeras. Therefore, we suggest that Chr 21 gene(s) distal from the ETS2 locus reduce mouse mlc2a and PEBP expression in DS model mice and DS. Thus, this chromosome engineering technology is a useful tool for identification or mapping of genes that contribute to the DS phenotypes.  相似文献   

16.
17.
Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.  相似文献   

18.
Z Cetin  S Yakut  E Mihci  AE Manguoglu  S Berker  I Keser  G Luleci 《Gene》2012,507(2):159-164
Pure partial trisomy of chromosome 21 is a rare event. The patients with this aberration are very important for setting up precise karyotype-phenotype correlations particularly in Down syndrome phenotype. We present here a patient with Down syndrome with a de novo derivative chromosome 21. Karyotype of the patient was designated as 46,XY,der(21)(p13)dup(21)(q11.2q21.3)dup(21)(q22.2q22.3) with regard to cytogenetic, FISH and array-CGH analyses. Non-continuous monosomic, disomic and trisomic chromosomal segments through the derivative chromosome 21 were detected by array-CGH analysis. STR analyses revealed maternal origin of the de novo derivative chromosome 21. The dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A) and Down Syndrome Critical Region 1 (DSCR1) genes that are located in Down syndrome critical region, are supposed to be responsible for most of the clinical findings of Down syndrome. However, our patient is the first patient with Down syndrome whose clinical findings were provided in detail, with a de novo derivative chromosome 21 resulting from multiple chromosome breaks excluding DYRK1A and DSCR1 gene regions.  相似文献   

19.
20.
The Ts65Dn segmentally trisomic mouse possesses an extra copy of a segment of chromosome 16 translocated to chromosome 17. This segment includes the mouse homolog of the Down syndrome critical region of human chromosome 21. The Ts65Dn mouse serves as a useful model to study the developmental regulation of the Down syndrome phenotype. To identify mice bearing the extra chromosome 16 segment, we developed a polymerase chain reaction (PCR) method as an alternative to karyotyping. Conditions under which segments of genes on chromosome 16 (App and Dyrk1a) could be coamplified with a control gene on chromosome 8 (Acta1) so that the yield of each PCR product was proportional to the amount of its template were determined. The amplification products were resolved and quantified by two methods. In the first method, the DNA segments were separated by agarose gel electrophoresis and stained with ethidium bromide. The fluorescence yields were quantified by photodensitometry. In the second method, the fragments were resolved and quantified by the high-performance DNA analysis system, a high-throughput, multichannel, microcapillary electrophoresis instrument. The results of both methods were within 10% of the expected ratio of 1.5. Application of these methods has allowed the maintenance of a Ts65Dn breeding colony through six generations and should permit the precise and efficient identification of trisomic and disomic animals at any developmental stage with minimally invasive procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号