首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field and laboratory studies of different plant species revealed the presence of intraspecific polymorphism in respect of the ability to accumulate 90Sr. The populations consisted of the plants effectively and ineffectively accumulating 90Sr; the former were capable of two to thirty-seven times higher accumulation than the latter. The proportion of the plants with high accumulating ability can reach 10%. Judging by the high values of the coefficients of correlation between the laboratory and field data, the results of the 90Sr content analysis different plant species were highly concordant. Accumulation of 90Sr by plants is in direct relation to its content in soil, but within the limits of the same contamination density, and is controlled by the plant genotype.  相似文献   

2.

Background and aims

Uptake of 90Sr and 137Cs in plants varies widely between soil types and between plant species. It is now recognized that the radionuclide uptake in plants is more influenced by site-specific and plant-specific parameters rather than the bulk radionuclide concentration in soil. We hypothesized that the stress which Alpine plants experience because of the short growing season may enhance the phylogenetic effect on the 137Cs and 90Sr transfer factors as well as the dependency of the uptake by plant to the concentrations of exchangeable Ca and K of soils.

Methods

We carried out a field study on the 90Sr and 137Cs uptake by 11 species of Alpine plants growing on 6 undisturbed and geochemically different soils in the Alpine valley of Piora, Switzerland.

Results

Results show that a strong correlation exists between the log TF and the log of exchangeable Ca or K of the soils.

Conclusions

Cs uptake by Phleum rhaeticum (Poales) and Alchemilla xanthochlora (Rosales) is more sensitive to the amount of exchangeable K in the soil than the corresponding uptake by other orders. Moreover, the 90Sr results indicate a phylogenetic effect between Non-Eudicot and Eudicots: the order Poales (Phleum rhaeticum) concentrating much less 90Sr than Eudicots do.  相似文献   

3.
选择乐安河—鄱阳湖湿地典型植物群落,采用重要值方法评价各样点植物群落特征并筛选出典型优势植物,通过室内理化测试分析不同生境中优势植物植株及其根区土壤中重金属Cu、Pb、Cd的含量;采用生物富集系数(BCF)方法评价不同优势植物对重金属Cu、Pb、Cd的富集特性。结果表明:研究区湿地植物以草本为主,在各样点共发现124种物种,包括蕨类植物2科2属2种,种子植物40科97属122种,并从中筛选出羊蹄、红蓼、鼠曲草、紫云英、苎麻等5种富集能力较强的优势植物;植物根区土壤中的Cu、Cd含量均超过土壤环境质量三级标准,而且Cu、Cd的最高含量分别为824.03、5.03 mg·kg-1;不同优势植物对Cu、Pb、Cd等3种重金属元素中的1种或2种表现出较强的富集能力,其中优势物种红蓼对Cu具有较强的富集能力,含Cu量最高为148.80 mg·kg-1,另一种优势物种鼠曲草对三种元素的生物富集系数均较高,且对Cd的最高富集含量为15.17 mg·kg-1,对Cd的生物富集系数最高值为19.14,高于其他植物10倍以上,鼠曲草对重金属Cd具有富集植物的基本特征,且对Cu和Cd具有共富集特征并具有较高的耐性,紫云英、羊蹄等对Cd的富集能力也较强。上述5种优势植物种群对鄱阳湖湿地Cu、Pb、Cd等重金属污染物的生态修复具有一定参考价值,可作为鄱阳湖湿地重金属污染修复植物的选择对象。  相似文献   

4.
Summary Absorption and accumulation of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Mg, Ca, Sr, Ba) metals were investigated as taxonomic characteristics (in 62 plant species). Leaf and soil samples were collected from 9 sites in temperature forest in Japan and the above mentioned elements were analyzed. Considerable differences were found among species in their ability to accumulate alkali and alkaline earth metals. Very high concentrations of Li (45 ppm, D.W.), K (37×103 ppm), Rb (159 ppm) and Cs (8.2 ppm) were detected inLastrea japonica which were about 412, 12, 27 and 6 times higher than those of the species with the lowest concentrations. Na content was high inAcer micranthum (358 ppm) which was 16 times higher than species with the lowest concentration. Other species containing high levels of alkali metals wereHydrangea macrophylla, Struthiopteris niponica, Clethra barbinervis. Mean discrimination ratio (D.R.) for all investigated plant species for Li, Na, Rb, and Cs to K were 1.7, 0.44, 0.9 and 1.8 respectively. High concentrations of alkaline earth metals Ca (36×103 ppm), Sr (345 ppm), and Ba (241 ppm) were found in the leaves ofHydrangea paniculata which were about 31, 84, and 72 times higher than those for the species with the lowest concentration. Mg was very high inStruthiopteris niponica (83×102 ppm). Other species with high concentrations of alkaline earth metals belonged to the genus Viburnum. Mean D.Rs. for Mg, Sr, and Bavs Ca were 1.0, 0.7 and 0.08. Principal component analysis of interrelationships between the mineral content in leaf tissues indicated that these elements could be classified into 2 groups with respect to their accumulation behavior in plants. The alkali metals K, Li, Rb, and Cs behaved similarly in their accumulation in leaves but Na behaved independently. Alkaline earth metals Ca, Mg, Sr, and Ba were also found to behave similarly in their accumulation. Factors scores of 1st and 2nd components revealed three groups of plant species: alkaliphilic, alkaline earthphilic, and neutral (non-accumulators).  相似文献   

5.
Strontium (Sr) and calcium (Ca) concentrations were studied in different plant species grown in five soil treatments. For either shoots or roots, a positive linear relationship was found between Sr and Ca concentrations in different plant species grown in the same soil treatment. Strontium and calcium concentrations of different species were related to the soil selectivity coefficient for Sr and Ca, defined as the ratio of CH3COONH4-extractable Sr and Ca to the ratio of Sr and Ca in the soil solution. For the species used in all soils, transfer factors (TF) for Sr, defined as the ratios of the Sr amount per g of dry plant material and the Sr amount per g of dry soil, were negatively correlated with extractable Ca of the soil. Transfer factors for Sr varied greatly among species or between roots and shoots. This variation of transfer factor was reduced when transfer factor values were divided by the shoot or root Ca concentration of each species. The proposed index TF for Sr per Ca concentration could be used to compare various soils according to their ability to supply plants with Sr when different plant species are grown in these soils.  相似文献   

6.
5种水生植物对所用4种放射性同位素都有一定的清除能力,其清除能力的大小不仅取决于生物的种类,而且还取决于生物本身代谢率的高低。试验结果:去污率高的可达80%,积累系数最高可达1,500;水体中含Ca量的多少对生物吸收积累放射性物质的多少有一定的影响;生物在积累放射性物质之后,转移到无放射性物质的水体中将释放出原积累的一部分放射性物质。    相似文献   

7.
Coastal plants live in heterogeneous and potentially stressful environments in which multiple stress factors may coexist. Some of these constraints can induce oxidative stress with consequent damage to cell components and structures. To contrast oxidative damage plants have evolved antioxidant systems, including both enzymatic and non-enzymatic molecules. The aim of this study was to highlight main physiological traits evolved by plants to survive in coastal environment through a comparison of nutritional and physiological parameters between dune (DC) and laboratory-grown (LC) plants of Calystegia soldanella (L.), a typical dune plant. In comparison with laboratory plants, dune plants living on a soil with relatively low nutrient content, were characterised by lower total nitrogen, K+ and phosphate content and by lower K+/Na+, PO4 2?/Cl? and N/Cl? ratios. Pigment content was significantly higher in LC than in DC plants. Despite their higher hydrogen peroxide content and lipid peroxidation, dune plants had a membrane damage, assessed by the electrolytic conductivity method, not significantly different from that of LC plants. Phenol and ascorbate pools, glutathione reductase and catalase activities were significantly higher in dune than in laboratory plants. Although the stress level was high, coastal plants were well protected against oxidative damage and proline, phenols, ascorbate, glutathione reductase and catalase seemed to play a pivotal role in plant adaptation to the constraints of coastal environment.  相似文献   

8.
向日葵(Helianthus annuus L.)对133Cs、88Sr的吸收和分布   总被引:1,自引:0,他引:1  
通过盆栽试验研究了向日葵(Helianthus annuus L.)对土壤中不同处理浓度133Cs和88Sr的吸收,以及133Cs和88Sr在向日葵不同部位的分布。结果表明:随着处理浓度的增加,植物中133Cs或88Sr的含量增加。同一处理浓度下,88Sr含量约比133Cs含量高一个数量级。133Cs和88Sr在植物不同部位分布不同。根部中133Cs含量高于植物的其他部位(茎、叶、花)。不同于133Cs在植物中的分布,88Sr除在根中的分布外,主要转运到了叶片。133Cs和88Sr在向日葵体内的分布与目前对放射性137Cs和90Sr的研究结果相似,所以133Cs和88Sr可分别预测137Cs和90Sr的运转。向日葵是治理大面积低放核素污染土壤的较佳植物种类。  相似文献   

9.
The capacity of Azospirillum brasilense to enhance the accumulation of K+, P, Ca2+, Mg2+, S, Na+, Mn2+, Fe2+, B, Cu2+, and Zn2+ in inoculated wheat and soybean plants was evaluated by using two different analytical methods with five A. brasilense strains originating from four distinct geographical regions. A Pseudomonas isolate from the rhizosphere of Zea mays seedlings was included as a control. All A. brasilense strains significantly improved wheat and soybean growth by increasing root and shoot dry weight and root surface area. The degree of plant response to inoculation varied among the different strains of A. brasilense. All strains were capable of colonizing roots, but the best root colonizer, Pseudomonas sp., had no effect on plant growth. The numbers of organisms of Brazilian strains Sp-245 and Sp-246 colonizing roots were similar regardless of the host plant. Numbers of organisms for the other strains were directly dependent on the host plant. The main feature characterizing mineral accumulation in inoculated plants was that all inoculation treatments changed the mineral balance of the plants, but in an inconsistent manner. Enhancement of mineral uptake by plants also varied among strains to a great extent and was directly dependent on the strain-plant combination; i.e., a strain capable of increasing accumulation of a particular ion in one plant species or cultivar often lacked the ability to do so in another. Minerals in inoculated plants were not evenly distributed in different plant tissues, and the changes varied among groups of plants within each bacterial strain inoculation treatment. We suggest that, although A. brasilense strains are capable of changing the mineral balance and content of plants, it is unlikely that this ability is a general mechanism responsible for plant improvement by A. brasilense.  相似文献   

10.
The accumulation of heavy metals by plants determines both the micronutrient content and the toxic metal content of our food. A field survey of higher terrestrial plants growing on a metalliferous site of the Iranian arid mountain in Isfahan was conducted to identify species accumulating exceptionally large concentrations of Zn and Ni in shoots and roots. Plant samples were collected from Irankoh areas near the Bama Pb and Zn mine. Sampling was carried out in Spring 2004 and analyzed for DTPA (Diethylene triamine pentaacetic acid) extractable Zn and Ni by atomic absorption spectrophotometry. Mean total and available Zn in the studied soils were 259.7 μgg?1 and 5.067 μgg?1, respectively. Soil total and available Ni were relatively low (58.9 μgg?1 and 0.143 μgg?1 respectively). Zinc concentrations were considerably high in shoots of Stachys inflate, Ebenus stellata, and Astragalus glaucanthus (556.88, 508.8, and 449.53 μgg?1, respectively). Nickel concentrations were markedly high in shoots of Teucrium polium, Alyssum bracteatum, and Ebenus stellata (13.21, 10.98, and 8.84 μgg?1, respectively). Zinc translocation factor (TF or shoot/root concentration ratio) was higher than Ni TF in most plant species. Zinc and Ni enrichment factors and shoot/root concentration ratios were also significantly high in Stachys inflate, Ebenus stellata, Astragalus glaucanthus Teucrium polium, Stipa barbata, Bromus tectorum, and Alyssum bracteatum. Results suggest that these plants could be good candidates for use in the revegetation and phytoremediation of Zn and Ni contaminated lands in arid regions.  相似文献   

11.
Time-dependent changes of phytoavailability of Sr after adding it to the soil were studied for better prediction of radioactive Sr behavior in soil–plant systems. Strontium-86 enriched stable isotope was added to a soil sample collected from a field of humus-rich Andosol. Plant uptake and extractability of Sr in the soil were assessed at given times after the addition during a 12-month period including repeated drying-rewetting. Proportion of the added Sr extracted by 1 M ammonium acetate solution from the soil was 45–58% throughout the period, which corresponded to that of long-time aged 90Sr in the soil. Pot cultivations of orchardgrass (Dactylis glomerata) and red clover (Trifolium pratense) were carried out starting with uncropped soil for four weeks five times during the experiment. Clear time-dependent changes were not observed in uptake of the added Sr by the plants. Aging is unlikely to decrease Sr availability over time. The labile form of Sr determined with the isotopic dilution method was approximately 15% of total soil Sr, and more than the percentage of the extractable Sr in the soil. The results suggest that a part of the non-extractable forms of Sr in the soil would be available to the plant.  相似文献   

12.
Zn uptake by maize plants may be affected by the presence of arbuscular mycorrhizal fungi (AMF). Collembola often play an important controlling role in the inter-relationship between AMF and host plants. The objective of this experiment was to examine whether the presence of Collembola at different densities (0.4 and 1 individuals g−1 dry soil) and their activity have any effect on Zn uptake by maize through the plant–AMF system. The presence of the AMF (Glomus intraradices) and of the Collembola species Folsomia candida was studied in a laboratory microcosm experiment, applying a Zn exposure level of 250 mg kg−1 dry soil. Biomass and water content of the plants were no different when only AMF or when both AMF and Collembola were present. In the presence of AMF the Zn content of the plant shoots and roots was significantly higher than without AMF. This effect was reduced by Collembola at both low and high density. High densities of Collembola reduced the extent of AMF colonization of the plant roots and hyphal length in the soil, but low densities had no effect on either. The results of this experiment reveal that the F. candidaG. intraradices interaction affects Zn uptake by maize, but the mechanisms are still unknown.  相似文献   

13.
Post‐dispersal seed predation and endozoochorous seed dispersal are two antagonistic processes in relation to plant recruitment, but rely on similar preconditions such as feeding behavior of seed consumers and seed traits. In agricultural landscapes, rodents are considered important seed predators, thereby potentially providing regulating ecosystem services in terms of biological weed control. However, their potential to disperse seeds endozoochorously is largely unknown. We exposed seeds of arable plant species with different seed traits (seed weight, nutrient content) and different Red List status in an experimental rye field and assessed seed removal by rodents. In a complementary laboratory experiment, consumption rates, feeding preferences, and potential endozoochory by two vole species (Microtus arvalis and Myodes glareolus) were tested. Seed consumption by rodents after 24 h was 35% in the field and 90% in the laboratory. Both vole species preferred nutrient‐rich over nutrient‐poor seeds and M. glareolus further preferred light over heavy seeds and seeds of common over those of endangered plants. Endozoochory by voles could be neglected for all tested plant species as no seeds germinated, and only few intact seeds could be retrieved from feces. Synthesis and applications. Our results suggest that voles can provide regulating services in agricultural landscapes by depleting the seed shadow of weeds, rather than facilitating plant recruitment by endozoochory. In the laboratory, endangered arable plants were less preferred by voles than noxious weeds, and thus, our results provide implications for seed choice in restoration approaches. However, other factors such as seed and predator densities need to be taken into account to reliably predict the impact of rodents on the seed fate of arable plants.  相似文献   

14.
A. Melzer  R. Kaiser 《Oecologia》1986,69(4):606-611
Summary 11 macrophytic species from a groundwater influenced chalk stream in Upper Bavaria were investigated during a period of one year in order to determine differences in the endogenous nitrate content, in total nitrogen content and in nitrate reductase activity (NRA). Nitrate concentrations of different plants taken from the same site of the river varied by a factor of approximately 103. A maximum of 1,958 mol NO 3 - g-1 dry w. could be measured in the petioles of Nasturtium officinale, which accounts for 12% of plant dry w. Very high values were also found in Callitriche obtusangula and Veronica angallis-aquatica. In comparison to the ambient water, mean accumulation rates of up to 131 could be found. In Fontinalis antipyretica, the plant poorest in nitrate, the ratio was only 1.24:1. Elodea canadensis belonged to a group of plants having very low nitrate concentrations. Since NRA was very low too, it is assumed that nitrogen nutrition of this species depends rather on ammonia than on nitrate. With a few exceptions nitrate content of different plant organs varied markedly. In general they were lowest in leaves and highest in shoot axes. Appreciable amounts of nitrate were also found in the roots of plants. No correlation could be found between endogenous nitrate content and NRA. In contrast to endogenous nitrate content and NRA, total nitrogen concentrations of the plants did not differ significantly.  相似文献   

15.
In lupin (Lupinus albus L.) and pea (Pisum sativum L., cv. Raman) it was shown that the uptake of89Sr from Knop's nutrient solution is significantly increased from a solution with decreased calcium content (one tenth of the normal content) and is slightly decreased from a solution with higher calcium content (150% of the normal content). The calciphile pea absorbs approximately 50% more calcium than the calciphobe lupin, and accordingly 50% radiostrontium less. The pea plant more strongly blocks the translocation of radiostrontium from roots to overground parts, as is proved by the higher discrimination factor of pea (i.e. by the ratio of specific activities of mCi89 Sr/g Ca of roots to overground parts). The presence of chlorine in the nutrient solution decreases the content of radiostrontium per gram of dry matter, both in pea and lupin. Radiostrontium is absorbed quickly by both species of plants and is autoradiographically detectable as early as 2 hours after the introduction of radiostrontium to the nutrient solution. *** DIRECT SUPPORT *** A01GP049 00004  相似文献   

16.
The ability of Enterococcus faecalis to transfer various genetic elements under natural conditions was tested in two municipal sewage water treatment plants. Experiments in activated sludge basins of the plants were performed in a microcosm which allowed us to work under sterile conditions; experiments in anoxic sludge digestors were performed in dialysis bags. We used the following naturally occurring genetic elements: pAD1 and pIP1017 (two so-called sex pheromone plasmids with restricted host ranges, which are transferred at high rates under laboratory conditions); pIP501 (a resistance plasmid possessing a broad host range for gram-positive bacteria, which is transferred at low rates under laboratory conditions); and Tn916 (a conjugative transposon which is transferred under laboratory conditions at low rates to gram-positive bacteria and at very low rates to gram-negative bacteria). The transfer rate between different strains of E. faecalis under natural conditions was, compared to that under laboratory conditions, at least 105-fold lower for the sex pheromone plasmids, at least 100-fold lower for pIP501, and at least 10-fold lower for Tn916. In no case was transfer from E. faecalis to another bacterial species detected. By determining the dependence of transfer rates for pIP1017 on bacterial concentration and extrapolating to actual concentrations in the sewage water treatment plant, we calculated that the maximum number of transfer events for the sex pheromone plasmids between different strains of E. faecalis in the municipal sewage water treatment plant of the city of Regensburg ranged from 105 to 108 events per 4 h, indicating that gene transfer should take place under natural conditions.  相似文献   

17.
The coding region for theEscherichia coli groEL (chaperonin-60) polypeptide was fused downstream of a pea rubisco small subunit transit peptide coding sequence under the control of a tandem 35S CaMV promoter. Transgenic tobacco plants (Nicotiana tabacum cv. Xanthi) containing this modifiedgroEL gene were produced. The modified groEL polypeptide was correctly imported into chloroplasts and accumulated to high or low levels in different plants. The majority of the modified groEL polypeptide was processed correctly to the mature form within the chloroplasts. Approximately 20% of the imported polypeptides retained a portion of the N-terminal transit peptide (TPgroEL). Both groEL and TPgroEL polypeptides assembled into tetradecameric species in the chloroplasts. In plants accumulating high levels of these products, the majority of the plant chaperonin-60 polypeptides in the chloroplast were present in novel hybrid tetradecameric species containing both bacterial and plant chaperonin-60 polypeptides. In plants accumulating low levels of groEL, the predominant species present appeared to be authentic plant cpn6014 and authentic bacterial groEL14. The growth and development of transgenic and control tobacco plants were indistinguishable.Abbreviations cpn60 chaperonin-60 - cpn10 chaperonin-10 - hsp heat shock protein - rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - ssu small subunit - spp stromal processing peptidase - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

18.
Vegetation growing in the Ely mining district of White Pine County, NV has been analyzed for tellurium to discover whether Te accumulator plants existed similar to those that take up Se in great quantities. In addition, the variation in Te content among species growing in different geological settings was studied. Another objective of this study was to determine the range of Te concentration in vegetation in regions where the Te content of surface materials was high, as in the Ely mining district, and low as in various areas of western CO. Trees and shrubs (480 samples) as well as flowering plants (505 samples) and their associated edaphic materials were collected from six sites in the Ely region and all plant parts were analyzed for Te, Se, Fe, S, Zn, Cu, and Pb. One hundred and five plants were collected from three areas in western CO. There is a highly significant difference between Te uptake by trees and that of perennial flowering plants. Flowers contain significantly more Te on the average than other plant parts. An examination of the Te content of tree parts reveals that leaves sorb the most and branches the least. When the Te content of edaphic materials is high, there is a corresponding increase in the Te content of plants. Shallow perennial plants were not found growing in areas where soils contained more than 10 mg kg−1 Te. Seleniferous species ofAstragalus contain larger quantities of Te than plants in the Ely area, whereas nonseleniferous members of this genus contain much less. The nitrotoxin producing Astragali contain concentrations of Te greater than that encountered in nonseleniferous species but less than that in seleniferous ones. No plants contained more than 1 mg kg−1 Te. Iron, Te, Se, and S are coherent in all plants and in most soils and rocks examined.  相似文献   

19.
We investigated the impact of low zinc (Zn) concentrations in the substare on the onset of flowering in Arabidopsis arenosa (Brassicaceae). Experiments were carried out in controlled conditions using plants from four different populations. The research was aimed to verify experimentally the following hypotheses: (1) Zn content in the growth medium promote the onset of flowering in A. arenosa, (2) Changes in the onset of flowering induced by Zn depend on Zn concentration employed; (3) Zn-induced early onset of flowering is an universal plant response present within the species and is not an effect of stress or physiological adaptation to high Zn content in the environment. Investigated plants were subjected to four different Zn concentrations: 0.4 (control), 155, 775 and 1,550???M Zn2+. To asses stress level in investigated plants we calculated biomass accumulation and employed fluorometric methods. Zn content was estimated in shoots using atomic absorption spectroscopy. Differences in the onset of flowering were assessed using Kaplan?CMeier curves. Our results showed that Zn was transported form growth medium to roots and shoots of investigated plants and that the content of Zn increased with the increase of Zn concentration in the growth medium. We evidenced that apart from one (1,550???M Zn2+) applied Zn concentrations did not caused stress in investigated plants what was confirmed by two independent experimental approaches: measurement of biomass accumulation and chlorophyll a fluorescence. Flowering curves obtained on the basis of calculation of Kaplan?CMeier estimator showed that: (1) control plants originating from four different populations did not differ in terms of the onset of flowering, (2) plants from each population tested tends to enter flowering phase earlier in response to applied Zn concentrations than control plants, (3) plants treated with the lowest tested Zn concentration (155???M Zn2+) tend to flower earlier than plants treated with the higher concentration (775???M Zn2+), (4) the impact of Zn on the onset of flowering did not depend on the origin on the plant material used (Zn-rich or Zn-poor soils). Our results indicate that Zn ions present in the growth medium promote early flowering in A.arenosa and that this effect may depend on Zn concentration used. Zn-induced early flowering in A. arenosa seems to be an universal plant response present within the species and is not an effect of stress or physiological adaptation to high Zn content in the environment.  相似文献   

20.
Two ornamental plants of Althaea rosea Cav. and Malva crispa L. were exposed to various concentrations of lead (Pb) (0, 50, 100, 200 and 500 mg·kg?1) for 70 days to evaluate the accumulating potential and the tolerance characteristics. The results showed that both plant species grown normally under Pb stress, and A. rosea had a higher tolerance than M. crispa, while M. crispa had a higher ability in Pb accumulation than A. rosea. Besides, lower Pb concentration (50 mg·kg?1) stimulated the shoot biomass in both plant species. Pb accumulation in plants was consistent with the increase of Pb levels, and the main accumulation sites were the roots and the older leaves. In addition, the photosynthetic pigments content and chlorophyll fluorescence parameters were influenced by Pb stress. In such case, both of the plants could improve the activities of antioxidant enzymes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the contents of the total soluble sugar and soluble protein, which reached the highest value at Pb 100 mg·kg?1, as well as the accumulation of the total thiols (T-SH) and non-protein thiols (NP-SH) to adapt to Pb stress. Thus, it provides the theoretical basis and possibility for ornamental plants of A. rosea and M. crispa in phytoremediation of Pb contaminated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号