首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bank voles free living in a contaminated environment have been shown to be more sensitive to cadmium (Cd) toxicity than the rodents exposed to Cd under laboratory conditions. The objective of this study was to find out whether benzo(a)pyrene (BaP), a common environmental co-contaminant, increases Cd toxicity through inhibition of metallothionein (MT) synthesis-a low molecular weight protein that is considered to be primary intracellular component of the protective mechanism. For 6 weeks, the female bank voles were provided with diet containing Cd [less than 0.1 μg/g (control) and 60 μg/g dry wt.] and BaP (0, 5, and 10 μg/g dry wt.) alone or in combination. At the end of exposure period, apoptosis and analyses of MT, Cd, and zinc (Zn) in the liver and kidneys were carried out. Dietary BaP 5 μg/g did not affect but BaP 10 μg/g potentiated rather than inhibited induction of hepatic and renal MT by Cd, and diminished Cd-induced apoptosis in both organs. The hepatic and renal Zn followed a pattern similar to that of MT, attaining the highest level in the Cd + BaP 10-μg/g group. These data indicate that dietary BaP attenuates rather than exacerbates Cd toxicity in bank voles, probably by potentiating MT synthesis and increasing Zn concentration in the liver and kidneys.  相似文献   

2.
Yang WW  Miao AJ  Yang LY 《PloS one》2012,7(3):e32300
In the present study, Cd(2+) adsorption on polyacrylate-coated TiO(2) engineered nanoparticles (TiO(2)-ENs) and its effect on the bioavailability as well as toxicity of Cd(2+) to a green alga Chlamydomonas reinhardtii were investigated. TiO(2)-ENs could be well dispersed in the experimental medium and their pH(pzc) is approximately 2. There was a quick adsorption of Cd(2+) on TiO(2)-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd(2+) complexed with TiO(2)-ENs. At equilibrium, Cd(2+) adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO(2)-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd(2+) toxicity was alleviated in the presence of TiO(2)-ENs. Algal growth was less suppressed in treatments with comparable total Cd(2+) concentration but more TiO(2)-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd(2+) concentration. No detectable amount of TiO(2)-ENs was found to be associated with the algal cells. Therefore, TiO(2)-ENs could reduce the free Cd(2+) concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii.  相似文献   

3.
Cadmium (Cd)-induced nephropathy was treated by triethylene-pentaminehexaacetic acid (TTHA) in male Syrian hamsters. Hamsters injected three times a week with 3 mg/kg body wt CdCl2 showed proteinuria, urinaryN-acetyl-β-d-inglucosaminidase (NAG), and fractional excretion of sodium (FENa) when compared to saline-injected control. Cd-treated hamsters injected ip with TTHA 10 mg/kg body wt five times a week showed reduction of renal damage, including reductions in urinary protein (from 6.7±2.2 to 4.3±0.5 mg/d) and NAG (0.17±0.06 to 0.04±0.02 U/d). Urinary excretion of Cd was significantly increased (from 87±51.3 to 3052±1485 mg/L) by TTHA administration. Cd concentration in renal cortical tissue was slightly reduced (26.4±3.0 to 21.8±2.7 mg/g. protein). Excretion of malondialdehyde (MDA) was increased only in Cd-injected hamsters (to 2.1±1.6 nM/L), and elevated MDA in renal cortical tissue was not reduced by the administration of TTHA (1041±105 vs 1104±358 nM/g protein). Glutathione (GSH) concentration in the renal cortex was significantly elevated after Cd administration and further increased after TTHA administration (5.5±2.1 to 9.8±2.0 μg/50 mg protein). There were no marked effects on creatinine clearance (Ccr) and hematocrit. Moreover, renal morphological changes were improved significantly by treatment with TTHA. We demonstrated the efficacy of TTHA in the treatment of Cd-induced nephropathy in hamsters. Although the precise mechanism of the TTHA effects on Cd-induced nephropathy has not been elucidated, it might involve GSH reducing the elevated MDA concentration in renal tissue.  相似文献   

4.
The aim of this study was to determine whether an oral administration of melatonin, a known antioxidant, free radical scavenger and metal chelator, influences tissue accumulation and toxicity of cadmium (Cd) in mice exposed subchronically to the metal. The animals received drinking water containing 50 μg Cd/mL only or with additional 2, 4 or 6 μg/mL melatonin for 8 weeks. Melatonin co-treatment brought about a dose-dependent decrease in the renal, hepatic and intestinal Cd concentrations, and the renal and hepatic metallothionein levels followed a pattern similar to that of the Cd accumulation. Histopathological changes occurred only in the kidneys (glomerular swelling and focal tubular degeneration) in all mice from the Cd alone group. In mice co-treated with melatonin, only slight (2 μg/mL melatonin) or no damage (4 and 6 μg/mL melatonin) was seen. The Cd and melatonin treatments did not affect renal lipid peroxidation and iron concentration. These data indicate that orally administered melatonin together with Cd reduces tissue accumulation of this metal; in particular, the reduction of renal Cd accumulation by melatonin is probably responsible for the prevention of Cd-induced injury in this organ.  相似文献   

5.
Effect of chronic cadmium (Cd) exposure and the influence of diethyldithiocarbamate (DDC) on Cd absorption was studied on the brain of young male Wistar rats. A significant amount of Cd accumulated in cerebral cortices of rats after 4 weeks of Cd (6 mg/kg body wt) exposure (through gastric intubation). The biological activity of calmodulin (CaM) decreased significantly (p less than 0.001) in the cerebral cortices of these animals in comparison to the control group. 3'-5' Phosphodiesterase and synaptic membrane Ca(2+)-Mg(2+) ATPase were also significantly affected (p less than 0.01 and p less than 0.001 respectively). However, Cd treatment did not alter synaptic membrane adenylate cyclase activity and DDC (9.2 mg/kg body wt, intraperitoneal) treatment along with Cd (6 mg/kg body wt) enhanced Cd accumulation in cerebral cortices of treated animals resulting in an increased inhibition of CaM and CaM dependent enzymes. These data suggest that Cd may be acting via binding to CaM and uncoupling it from its normal cellular control of calcium.  相似文献   

6.
The aim of this study was to evaluate the effect of ethylenediaminetetraacetic acid (EDTA) on cadmium (Cd) induced renal dysfunction. Seventeen workers (14 males, 3 females) were diagnosed with occupational Cd poisoning in 1986. These individuals had between 7 to 39 years of Cd exposure. From 1986 to 1999, patients received periodic EDTA therapy as part of their follow-up, all at the same hospital. Levels of urinary cadmium (UCd) and urinary beta2-microglobulin (B2M) were measured before and after each annual EDTA treatment period. Renal dysfunction was defined as urinary B2M > 0.8 mg/g Cr (creatinine). In these workers, patients with UCd level higher than 10 microg/g Cr in 1986 had abnormal B2M excretions (> or = 0.8 mg/g Cr) or trended to have abnormal B2M levels during the treatment period. However, in subjects with UCd concentration lower than 10 microg/g Cr in 1986, their urinary B2M excretions either remained normal (< 0.8 mg/g Cr) or returned to normal during the treatment period. The prevalence of renal dysfunction increased during the follow up period regardless of whether UCd levels increased or not, indicating a progressive renal dysfunction despite removal from Cd exposure. Our results suggest that reversibility of renal dysfunction caused by Cd related to the level of Cd exposure at the time of removal from exposure: renal dysfunction could be reversed if initial UCd < 10 microg/g Cr, but was irreversible when UCd > 10 microg/g Cr. Repeated examinations on these 17 Cd exposed workers from 1986 to 1999 also revealed that periodic administration of EDTA had no beneficial effects on chronic Cd-induced renal dysfunction.  相似文献   

7.
Cadmium (Cd2+) induces renal proximal tubular (PT) damage, including disruption of the E-cadherin/β-catenin complex of adherens junctions (AJs) and apoptosis. Yet, chronic Cd2+ exposure causes malignant transformation of renal cells. Previously, we have demonstrated that Cd2+-mediated up-regulation of the multidrug transporter Abcb1 causes apoptosis resistance in PT cells. We hypothesized that Cd2+ activates adaptive signaling mechanisms mediated by β-catenin to evade apoptosis and increase proliferation. Here we show that 50 μM Cd2+, which induces cell death via apoptosis and necrosis, also causes a decrease of the trans-epithelial resistance of confluent WKPT-0293 Cl.2 cells, a rat renal PT cell model, within 45 min of Cd2+ exposure, as measured by electric cell-substrate impedance sensing. Immunofluorescence microscopy demonstrates Cd2+-induced decrease of E-cadherin at AJs and redistribution of β-catenin from the E-cadherin/β-catenin complex of AJs to cytosol and nuclei after 3 h. Immunoblotting confirms Cd2+-induced decrease of E-cadherin expression and translocation of β-catenin to cytosol and nuclei of PT cells. RT-PCR shows Cd2+-induced increase of expression of c-myc and of the isoform Abcb1a at 3 h. The data prove for the first time that Cd2+ induces nuclear translocation of β-catenin in PT cells. We speculate that Cd2+ activates β-catenin/T-cell factor signaling to trans-activate proliferation and apoptosis resistance genes and promote carcinogenesis of PT cells.  相似文献   

8.
1. A short-term exposure of adult Wistar rats to Cu (50 μg/ml) and Cd (10.0 μg/ml drinking water) caused significant changes in the subcellular concentrations of Cd, Cu, Zn and metallothionein (MT) in the liver and kidney; the concentrations were close to the physiological values, however.2. To establish a relationship between these changes in the subcellular concentrations of Cd, Cu, Zn and the level of MT in the post-mitochondrial fraction of the liver and kidney, the analytical data (N = 42) were subjected to the multiple regression analysis.3. The analysis showed that MT synthesis in the liver was principally induced by small amounts of Cd (0.32–1.4 μg/g wet wt) whereas in the kidney a level of MT in the post-mitochondrial fraction correlated positively with the renal Cd and Cu, as well as with the level of this protein in the liver.4. The above results together with the positive correlation between the level of MT in the post-mitochondrial fraction and the concentration of Cu in this fraction, as well as the fact that under normal physiological conditions the capacity of MT (β-domain) in the liver and kidney was sufficient to bind 50–100% of the total post-mitochondrial Cu suggest that MT, first induced by small amounts of Cd, may be involved in the metabolism of Cu.  相似文献   

9.
A unicellular alga displaying a high growth rate under heterotrophic growth conditions was isolated from soil and identified as Chlorella sorokiniana. The optimal temperature for growth was 35 degrees C and the optimal pH was 6.0-7.0. Glucose, sucrose, galactose, maltose, and soluble starch served as carbon sources supporting growth under dark conditions. The cell yield was 50 g/l (wet weight) in a heterotrophic medium containing 3% glucose. Isolated unicellular algae were highly resistant to heavy metals such as Cd(2+), of which the minimal inhibitory concentration was 4 mM. Algae were capable of taking up the heavy metal ions Cd(2+), Zn(2+) and Cu(2+) at 43.0, 42.0 and 46.4 microg/mg dry weight, respectively. Growth inhibition of Oryza sative shoots by 5 ppm Cd(2+) in hydroponic medium was completely prevented by the addition of 0.25 mg of wet Chlorella cells. These results indicated that this isolate was potentially useful for phytoremediation by preventing environmental dispersion of heavy metals.  相似文献   

10.
Heterogeneous inhibition of horseradish peroxidase activity by cadmium   总被引:1,自引:0,他引:1  
Inhibition of horseradish peroxidase (HRP) activity by cadmium was studied under steady-state kinetic conditions after preincubation of the enzyme with millimolar concentrations of Cd(2+) for various periods of time. The H(2)O(2)-mediated oxidation of o-dianisidine by HRP was used to assess the enzymatic activity. Cd(2+) was found to be either a noncompetitive inhibitor of HRP or a mixed inhibitor of HRP depending both on the duration of incubation with HRP and on Cd(2+) concentration. Furthermore, for the same inhibition type, K(i) values dropped as incubation time increased. These results suggested that Cd(2+) would slowly bind to the enzyme and progressively induce conformational changes. Spectrophotometric analysis showed that indeed Cd(2+) altered the heme Soret absorption band on binding HRP and exhibited a K(d) which decreased as the incubation time of HRP with Cd(2+) increased. Hill plots suggested a cooperative binding of up to three Cd(2+) ions per molecule of HRP. Thus, Cd(2+) binding to HRP resulted in progressive inhibition of enzymatic activity with a change in the inhibition type as the number of Cd(2+) ions per HRP molecule increased. Results also illustrated the potential danger of long-term exposure to heavy metals, even for enzymes with low affinity for them.  相似文献   

11.
The present study investigated the mechanisms of intestinal cadmium (Cd) uptake and efflux, using isolated enterocytes of freshwater rainbow trout (Oncorhynchus mykiss) as the experimental model. The apical uptake of free Cd(2+) in the enterocytes was a saturable and high-affinity transport process. Both zinc (Zn(2+)) and iron (Fe(2+)) inhibited cellular Cd(2+) uptake through a competitive interaction, suggesting that Cd(2+) enters enterocytes via both Zn(2+) (e.g., ZIP8) and Fe(2+) (e.g., DMT1) transport pathways. Cellular Cd(2+) uptake increased in the presence of HCO(3)(-), which resembled the function of mammalian ZIP8. Cellular Cd(2+) uptake was unaffected by Ca(2+), indicating that Cd(2+) does not compete with Ca(2+) for apical uptake. Interestingly, Cd uptake was influenced by the presence of l-cysteine, and under the exposure condition where Cd(Cys)(+) was the predominant Cd species, cellular Cd uptake rate increased with the increased concentration of Cd(Cys)(+). The kinetic analysis indicated that the uptake of Cd(Cys)(+) occurs through a low capacity transport mechanism relative to that of free Cd(2+). In addition, Cd efflux from the enterocytes decreased in the presence of an ATPase inhibitor (orthovanadate), suggesting the existence of an ATPase-coupled extrusion process. Overall, our findings provide new mechanistic insights into the intestinal Cd transport in freshwater fish.  相似文献   

12.
Recent findings from our laboratories have shown that Cd2+ has relatively specific damaging effects on the adhering and occluding junctions in the established porcine renal epithelial cell line, LLC-PK1. Results of the present studies show that the junction-perturbing effects of Cd2+ in LLC-PK1 cells are more pronounced when Cd2+ is applied to the basolateral cell surface than when it is applied to the apical surface, and that the severity of the effects is inversely related to the concentration of Ca2+ in the medium. Additional results show that exposure to sublethal concentrations of Cd2+ decreases the amount of E-cadherin that is associated with cell-cell contacts. These results suggest that Cd2+ damages Ca(2+)-dependent cell-cell junctions in LLC-PK1 cells by interacting with E-cadherin or a similar Ca(2+)-sensitive site that is oriented toward the basolateral cell surface.  相似文献   

13.
Abstract

Impact of root Cd concentration on production of cysteine, non-protein thiols (NP-SH), glutathione (GSH), reduced glutathione (GSSG), and phytochelatins (PCs) in Eichhornia crassipes exposed to different dilutions of brass and electroplating industry effluent (25%, 50%, and 75%), and synthetic metal solutions of Cd alone (1, 2.5, and 3.5?ppm) and with Cr (1?ppm Cd + 1?ppm Cr, 2.5?ppm Cd + 3?ppm Cr, and 3.5?ppm Cd + 4?ppm Cr) was assessed in a 45?days study. Different treatments were used to understand and compare differential antioxidant defense response of plant under practical drainage (effluent) and experimental synthetic solutions. The production of NP-SH and cysteine was maximum under 2.5?ppm Cd + 3?ppm Cr treatments i.e., 1.78?µmol/g fw and 288?nmol/g fw, respectively. The content of GSH declined whereas that of GSSG increased progressively with exposure duration in all treatments. HPLC chromatograms revealed that the concentrations of PC2, PC3, and PC4 (248, 250, and 288?nmol-SH equiv.g?1 fw, respectively) were maximum under 1?ppm Cd, 1?ppm Cd + 1?ppm Cr, and 2.5?ppm Cd + 3?ppm Cr treatments, respectively. PC2, PC3, and PC4 concentrations increased with Cd accumulation in the range 812–1354?µg/g dry wt, 1354–2032?µg/g dry wt and 2032–3200?µg/g dry wt, respectively. Thus, the study establishes a direct proportionality relationship between concentration/length of phytochelatins and root Cd concentrations, upto threshold limits, in E. crassipes.  相似文献   

14.
Pregnancy is associated with profound changes in renal hemodynamics and electrolyte handling. Relaxin, a hormone secreted by the corpus luteum, has been shown to induce pregnancy-like increases in renal blood flow and glomerular filtration rate (GFR) and alter osmoregulation in nonpregnant female and male rats. However, its effects on renal electrolyte handling are unknown. Accordingly, the influence of short (2 h)- and long-term (7 day) infusion of relaxin on renal function was determined in the male rat. Short term infusion of recombinant human relaxin (rhRLX) at 4 microg.h(-1).100 g body wt(-1) induced a significant increase in effective renal blood flow (ERBF) within 45 min, which peaked at 2 h of infusion (vehicle, n = 6, 2.1 +/- 0.4 vs. rhRLX, n = 7, 8.1 +/- 1.1 ml.min(-1).100 g body wt(-1), P < 0.01). GFR and urinary excretion of electrolytes were unaffected. After a 7-day infusion of rhRLX at 4 microg/h, ERBF (1.4 +/- 0.2 vs. 2.5 +/- 0.4 ml.min(-1).100 g body wt(-1), P < 0.05), urine flow rate (3.1 +/- 0.3 vs. 4.3 +/- 0.4 microl.min(-1).100 g body wt(-1), P < 0.05) and urinary sodium excretion (0.8 +/- 0.1 vs. 1.2 +/- 0.1 micromol.min(-1).100 g body wt(-1), P < 0.05) were significantly higher; plasma osmolality and sodium concentrations were lower in rhRLX-treated rats. These data show that long-term relaxin infusion induces a natriuresis and diuresis in the male rat. The mechanisms involved are unclear, but they do not involve changes in plasma aldosterone or atrial natriuretic peptide concentrations.  相似文献   

15.
The three-ridge clamAmblema perplicata was used to monitor two streams for the presence of zinc (Zn) and cadmium (Cd) derived from an industrial source. Clams were collected from a relatively uncontaminated area in one river and transported to four study sites in the two contaminated streams. The clams were placed into polyethylene cages and left in these streams for one week. Control clams were treated in a similar manner and left in the uncontaminated river.The highest mean concentration of Zn (956 µg/g dry wt) was found in the gill tissue of clams from the most contaminated site. The highest mean Cd concentration (18.6 µg/ g dry wt) was found in digestive glands of clams, also from the most contaminated site. Mean concentrations at contaminated sites were significantly higher than background and control levels; the findings suggest that these particular organs of clams may be useful in monitoring levels of Zn and Cd in other freshwater systems.  相似文献   

16.
Major zinc binding protein purified from renal brush border membrane (BBM) (R. Kumar, R. Prasad, Biochim. Biophys. Acta 1419 (1999) 23) was reconstituted into liposomes and its functional characteristics were investigated. Physical incorporation of the major zinc binding protein into the proteoliposomes was checked by SDS-PAGE, which showed a single band on silver staining. The structural integrity of the proteoliposomes was assessed by phase contrast microscopy, which revealed the proteoliposomes as globular structures and intact boundaries. Further structural integrity/leakiness of the proteoliposomes was checked by monitoring efflux of Zn(2+) from the pre-loaded proteoliposomes in the presence of either 2 mM Ca(2+) or Cd(2+) or Zn(2+). It was observed that even after 2 h of the initiation of efflux, 85-95% of Zn(2+) was retained in the proteoliposomes, thereby indicating that proteoliposomes were not leaky and maintained structural integrity during the uptake study. Zinc uptake into the proteoliposomes followed Michaelis-Menten kinetics with affinity constant (K(m)) of 1.03 mM and maximal velocity (V(max)) of 1333 nmol/mg protein per min. The uptake process followed first-order kinetics with a rate constant (k) of 1. 09x10(-3) s(-1). The specificity of zinc transport system was determined by studying the interaction of divalent cations viz. Ca(2+) and Cd(2+) with the zinc uptake. It was observed that Cd(2+) competitively inhibited the zinc uptake process with inhibitory concentration (K(i)) of 2.9 mM. Kinetic analysis of inhibitory effect of Cd(2+) on zinc uptake revealed an increase in K(m) to 1.74 mM without influencing V(max). Zn(2+) uptake into the proteoliposomes was found to be temperature sensitive and Arrhenius plot showed a breakpoint at 27 degrees C. The apparent energies of activation (E(a)) were found to be 7.09 and 2.74 kcal/mol below and above the breakpoint, respectively. The initial velocity of Zn(2+) uptake increased with the increase in outwardly directed proton gradient ([H](i) greater than [H](o)). The Zn(2+) uptake was inhibited by DCCD, thereby suggesting the involvement of -COOH groups in the translocation of Zn(2+) across the lipid bilayer. The ratio of acidic to basic amino acids (1.26) strongly indicates that it is an acidic protein. The cysteine content in this protein was insignificant, which further corroborates the possibility that the acidic amino acids might be prominent candidates for binding to zinc. The findings of the present study confirms that 40 kDa major zinc binding glycoprotein purified from renal BBM is a zinc transporter involved in the influx of Zn(2+) into the epithelial cells of the renal tubular system.  相似文献   

17.
This article is based on data on the levels of metals (Cd, Zn, Cu) and metallothionein (MT) determined radiochemically with203Hg in renal cortex and liver of 137 autopsy cases. From this number, for 23 cases, the gel filtration of the cytoplasmic fraction of the organs was performed. The molar content of metals in the MT fraction (Sephadex G-50) amounted to 46.9, 50.2, and 2.0% for Cd, Zn, and Cu in renal cortex, respectively, and to 8.3, 83.6, and 9.1% for Cd, Zn, and Cu in the liver, respectively. In parallel with the increase of Cd and MT in renal cortex, increasing saturation was found of the MT fraction by Cd, occurring at the expense of Zn and Cu. Equimolar amounts of Cd and Zn in the MT fraction are found at Cd level of 0.5 μmol Cd/g wet wt of renal cortex. In the liver, analogous dependency (elevation of %Zn, depression of %Cd and %Cu) were observed in relation to Zn and MT levels in this organ. The basic level of Zn (not bound with MT) was estimated at 0.5 μmol/g for both renal cortex and liver. A deficit of non-MT Zn in kidneys is proposed as an alternative mechanism of toxic Cd action.  相似文献   

18.
The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction's transition state. Herein, we report a study on Cd(2+) rescue of the deleterious phosphorothioate substitution at the cleavage site. Under all conditions, the Cd(2+) concentration dependence can be accounted for by binding of a single rescuing metal ion. The affinity of the rescuing Cd(2+) is sensitive to perturbations at the P9/G10.1 site but not at the cleavage site or other sites in the conserved core. These observations led to a model in which a metal ion bound at the P9/G10.1 site in the ground state acquires an additional interaction with the cleavage site prior to and in the transition state. A titration experiment ruled out the possibility that a second tight-binding metal ion (< 10 microM) is involved in the rescue, further supporting the single metal ion model. Additionally, weakening Cd(2+) binding at the P9/G10.1 site did not result in the biphasic binding curve predicted from other models involving two metal ions. The large stereospecific thio-effects at the P9/G10.1 and the cleavage site suggest that there are interactions with these oxygen atoms in the normal reaction that are compromised by replacement of oxygen with sulfur. The simplest interpretation of the substantial rescue by Cd(2+) is that these atoms interact with a common metal ion in the normal reaction. Furthermore, base deletions and functional group modifications have similar energetic effects on the transition state in the Cd(2+)-rescued phosphorothioate reaction and the wild-type reaction, further supporting the model that a metal ion bridges the P9/G10.1 and the cleavage site in the normal reaction (i.e., with phosphate linkages rather than phosphorothioate linkages). These results suggest that the hammerhead undergoes a substantial conformational rearrangement to attain its catalytic conformation. Such rearrangements appear to be general features of small functional RNAs, presumably reflecting their structural limitations.  相似文献   

19.
Renal function was examined in adult rainbow trout (Oncorhynchus mykiss) after chronic exposure to a sublethal level of dietary Cd (500 mg/kg diet) for 52 d and during a subsequent challenge to waterborne Cd (10 microg/L) for 72 h. Dietary Cd had no major effects on UFR (urine flow rate) and GFR (glomerular filtration rate) but caused increased renal excretion of glucose, protein, and major ions (Mg(2+), Zn(2+), K(+), Na(+), Cl(-) but Ca(2+)). However, dietary Cd did not affect any plasma ions except Na(+) which was significantly elevated in the Cd-acclimated trout. Plasma glucose and ammonia levels fell by 25% and 36% respectively, but neither plasma nor urine urea was affected in Cd-acclimated fish. Dietary Cd exposure resulted in a remarkable increase of Cd load in the plasma (48-fold, approximately 22 ng/mL) and urine (60-fold, 8.9 ng/mL), but Cd excretion via the kidney was negligible on a mass-balance basis. Clearance ratio analysis indicates that all ions, Cd, and metabolites were reabsorbed strongly (58-100%) in both na?ve and dietary Cd exposed fish, except ammonia which was secreted in both groups. Mg(2+), Na(+), Cl(-) and K(+) reabsorption decreased significantly (3-15%) in the Cd-exposed fish relative to the control. Following waterborne Cd challenge, GFR and UFR were affected transiently, and only Mg(2+) and protein excretion remained elevated with no recovery with time in Cd-acclimated trout. Urinary Ca(2+) and Zn(2+) excretion rates dropped with an indication of renal compensation towards plasma declines of both ions. Cadmium challenge did not cause any notable effects on urinary excretion rates of metabolites. However, a significant decrease in Mg(2+) reabsorption but an increase in total ammonia secretion was observed in the Cd-acclimated fish. The study suggests that dietary Cd acclimation involves physiological costs in terms of renal dysfunction and elevated urinary losses.  相似文献   

20.
The objective of this study was to correlate hepatic and renal cadmium (Cd) accumulation, Cd-binding capacity of metallothionein (MT) and lipid peroxidation with the tissue injury in the male bank voles raised under short (8 h light/16 h dark) and long (16 h light/8 h dark) photoperiods that affect differently Cd accumulation and MT induction in these rodents. The animals were exposed to dietary Cd (0, 40 and 80 microg/g) for 6 weeks. The accumulation of Cd in the liver and kidneys appeared to be dose-dependent in bank voles from the two photoperiod groups; however, the short-photoperiod animals exhibited significantly higher concentrations of Cd in both organs than the long-photoperiod bank voles. Cd-Binding capacity of MT in the liver and kidneys of bank voles from the long photoperiod was sufficiently high to bind and detoxify all Cd ions, while in the animals fed 80 microg Cd/g under the short photoperiod, the concentrations of Cd in both organs exceeded (by about 10 microg/g) the MT capacity. However, similar histopathological changes in the liver (a focal hepatocyte swelling and granuloma) and kidneys (a focal degeneration of proximal tubules) occurred in Cd-80 bank voles from the two photoperiods. Likewise, in either photoperiod group, dietary Cd brought about a similar, dose-dependent decrease in the hepatic and renal lipid peroxidation, which paralleled closely that of the iron (Fe) concentrations. These data indicate that: (1) MT does not protect the liver and kidneys against Cd-induced injury in the bank vole exposed to the higher level of dietary Cd; and (2) lipid peroxidation cannot be responsible for the tissue damage. It is hypothesized that dietary Cd produces histopathological changes indirectly, through depressing the tissue Fe and Fe-dependent oxidative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号