首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胸腺素α1的乙酰化修饰不依赖于乙酰转移酶RimL   总被引:1,自引:1,他引:0  
目的:考察大肠杆菌乙酰转移酶RimL对胸腺素α1(Tα1)乙酰化修饰的影响。方法:构建含500bp同源臂的卡那抗性基因打靶片段,利用Red同源重组系统,使大肠杆菌B121(DE3)的rimL基因插入失活,随后导入质粒pCP20去除抗性基因,构建突变菌株rimL-BL21(DE3);将重组质粒pET-Tα1-L12分别转入出发菌株和突变菌株中进行表达,经固定金属离子亲和层析和反向高效液相层析后,将所得纯品进行质谱分析,精确测定相对分子质量。结果:PCR鉴定结果证明成功敲除rimL基因;质谱结果表明,rimL基因敲除菌中所表达的Tα1-L12融合蛋白与出发菌株一样,均有部分乙酰化修饰。结论:Tα1的乙酰化修饰并不依赖于RimL。  相似文献   

2.
RimL is responsible for converting the prokaryotic ribosomal protein from L12 to L7 by acetylation of its N-terminal amino group. We demonstrate that purified RimL is capable of posttranslationally acetylating L12, exhibiting a V(max) of 21 min(-1). We have also determined the apostructure of RimL from Salmonella typhimurium and its complex with coenzyme A, revealing a homodimeric oligomer with structural similarity to other Gcn5-related N-acetyltransferase superfamily members. A large central trough located at the dimer interface provides sufficient room to bind both L12 N-terminal helices. Structural and biochemical analysis indicates that RimL proceeds by single-step transfer rather than a covalent-enzyme intermediate. This is the first structure of a Gcn5-related N-acetyltransferase family member with demonstrated activity toward a protein N(alpha)-amino group and is a first step toward understanding the molecular basis for N(alpha)acetylation and its function in cellular regulation.  相似文献   

3.
Sasaki C  Vårum KM  Itoh Y  Tamoi M  Fukamizo T 《Glycobiology》2006,16(12):1242-1250
Sugar recognition specificities of class III (OsChib1a) and class I (OsChia1cDeltaChBD) chitinases from rice, Oryza sativa L., were investigated by analyzing (1)H- and (13)C-nuclear magnetic resonance spectra of the enzymatic products from partially N-acetylated chitosans. The reducing end residue of the enzymatic products obtained by the class III enzyme was found to be exclusively acetylated, whereas both acetylated and deacetylated units were found at the nearest neighbor to the reducing end residue. Both acetylated and deacetylated units were also found at the nonreducing end residue and its nearest neighbor of the class III enzyme products. Thus, only subsite (-1) among the contiguous subsites (-2) to (+2) of the class III enzyme was found to be specific to an acetylated residue. For the class I enzyme, the reducing end residue was preferentially acetylated, although the specificity was not absolute. The nearest neighbor to the acetylated reducing end residue was specifically acetylated. Moreover, the nonreducing end residue produced by the class I enzyme was exclusively acetylated, although there was a low but significant preference for deacetylated units at the nearest neighbor to the nonreducing end. These results suggest that the three contiguous subsites (-2), (-1), and (+1) of the class I enzyme are specific to three consecutive GlcNAc residues of the substrate. In rice plants, the target of the class I enzyme might be a consecutive GlcNAc sequence probably in the cell wall of fungal pathogen, whereas the class III enzyme might act toward an endogenous complex carbohydrate containing GlcNAc residue.  相似文献   

4.
Functional modification of protein through N-terminal acetylation is common in eukaryotes but rare in prokaryotes. Prothymosin α is an essential protein in immune stimulation and apoptosis regulation. The protein is N-terminal acetylated in eukaryotes, but similar modification has never been found in recombinant protein produced in prokaryotes. In this study, two mass components of recombinant human prothymosin α expressed in Escherichia coli were identified and separated by RP-HPLC. Mass spectrometry of the two components showed that one of them had a 42 Da mass increment as compared with the theoretical mass of human prothymosin α, which suggested a modification of acetylation. The mass of another one was equal to that of the theoretical one. Peptides mass spectrometry of the modified component showed that the 42-Da mass increment occurred in the N-terminal peptide domain, and MS/MS peptide sequencing of the N-terminal peptide found that the acetylated modification occurred at the N-terminal serine residue. So, part of the recombinant human prothymosin α produced by E. coli was N-terminal acetylated. This finding adds a new clue for the mechanism of acetylated modification in prokaryotes, and also suggested a new method for production of N-terminal modificated prothymosin α and thymosin α1.  相似文献   

5.
Protein kinase D (PKD) is a serine/threonine kinase regulated by diacylglycerol signaling pathways with unique domain composition and enzymatic properties, still awaiting identification of its specific substrate(s). Here we have isolated, cloned, and characterized a novel protein from PC12 cells, termed Kidins220 (kinase D-interacting substrate of 220 kDa), as the first identified PKD physiological substrate. Kidins220 contains 11 ankyrin repeats and four transmembrane domains within the N-terminal region. We have shown that Kidins220 is an integral membrane protein selectively expressed in brain and neuroendocrine cells, where it concentrates at the tip of neurites. In PC12 cells, PKD co-immunoprecipitates and phosphorylates endogenous Kidins220. This phosphorylation is increased after stimulating PKD activity in vivo by phorbol-12, 13-dibutyrate treatment. A constitutively active PKD mutant (PKD-S744E/S748E) phosphorylates recombinant Kindins220-VSVG in vitro in the absence of phorbol-12,13-dibutyrate. Conversely, Kidins220-VSVG phosphorylation is abolished when a dominant negative mutant of PKD (PKD-D733A) is used. Moreover, a peptide within the Kidins220 sequence, containing serine 919 in a consensus motif for PKD-specific phosphorylation, behaved as the best peptide substrate to date. Substitution of serine 919 to alanine abrogated peptide phosphorylation. Furthermore, by generating an antibody recognizing Kidins220 phosphorylated on serine 919, we show that phorbol ester treatment causes the specific phosphorylation of this residue in PC12 cells in vivo. Our results provide the first physiological substrate for PKD and indicate that Kidins220 is phosphorylated by PKD at serine 919 in vivo.  相似文献   

6.
Sheng Y  Khanam N  Tsaksis Y  Shi XM  Lu QS  Bognar AL 《Biochemistry》2008,47(8):2388-2396
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.  相似文献   

7.
Wu J  Chang S  Gong X  Liu D  Ma Q 《Biochimica et biophysica acta》2006,1760(8):1241-1247
Functional modification of protein through N-terminal acetylation is common in eukaryotes but rare in prokaryotes. Prothymosin alpha is an essential protein in immune stimulation and apoptosis regulation. The protein is N-terminal acetylated in eukaryotes, but similar modification has never been found in recombinant protein produced in prokaryotes. In this study, two mass components of recombinant human prothymosin alpha expressed in Escherichia coli were identified and separated by RP-HPLC. Mass spectrometry of the two components showed that one of them had a 42 Da mass increment as compared with the theoretical mass of human prothymosin alpha, which suggested a modification of acetylation. The mass of another one was equal to that of the theoretical one. Peptides mass spectrometry of the modified component showed that the 42-Da mass increment occurred in the N-terminal peptide domain, and MS/MS peptide sequencing of the N-terminal peptide found that the acetylated modification occurred at the N-terminal serine residue. So, part of the recombinant human prothymosin alpha produced by E. coli was N-terminal acetylated. This finding adds a new clue for the mechanism of acetylated modification in prokaryotes, and also suggested a new method for production of N-terminal modificated prothymosin alpha and thymosin alpha1.  相似文献   

8.
N-terminal protein acetylation is common in eukaryotes and halophilic archaea, but very rare in bacteria. We demonstrate that some of the most abundant proteins present in the crenarchaeote Sulfolobus solfataricus, including subunits of the thermosome, proteosome and ribosome, are acetylated at the N-terminus. Modification was observed at the N-terminal residues serine, alanine, threonine and methionine-glutamate. A conserved archaeal protein, ssArd1, was cloned and expressed in Escherichia coli, and shown to acetylate the same N-terminal sequences in vitro. The specific activity of ssArd1 is sensitive to protein structure in addition to sequence context. The crenarchaeota and euryarchaeota apparently differ in respect of the frequency of acetylation of Met-Glu termini, which appears much more common in S. solfataricus. This sequence is acetylated by the related Nat3 acetylase in eukarya. ssArd1 thus has a relaxed sequence specificity compared with the eukaryotic N-acetyl transferases, and may represent an ancestral form of the enzyme. This represents another example where archaeal molecular biology resembles that in eukaryotes rather than bacteria.  相似文献   

9.
N-terminal acetylation in the yeast Saccharomyces cerevisiae is catalysed by any of three N-terminal acetyltransferases (NAT), NatA, NatB, and NatC, which contain the catalytic subunits Ard1p, Nat3p and Mak3p, respectively. Yeast 6-phosphofructo-2-kinase (PFK2) was found to be acetylated at the amino acid lysine 3. The Lys3-Arg mutant was not acetylated and the mutation causes a slight decrease in enzyme activity. PFK2 from yeast cells exposed to hypo-osmotic stress is known to be phosphorylated at Ser8 and Ser652 (Dihazi et al., 2001a). We have taken a mass spectrometric approach to investigate the influence of PFK2 acetylation on its phosphorylation. Wild-type PFK2 and the Lys3-Arg mutant were purified from hypo-osmotically stressed cells and analysed with MALDI-TOF MS for phosphorylation. Wild-type PFK2 without any tag sequence was found to be acetylated and two times phosphorylated at the N-terminal peptide T(1-40) carrying the acetylation. The same results were observed with C-terminally His-tagged PFK2. When the His-tag was added to the N-terminus of the protein PFK2, acetylation was found to be incomplete and only one phosphate was incorporated in the peptide T(1-41). The Lys3-Arg mutant of PFK2 was not at all post-translationally modified at the N-terminal peptide. Our data indicate that Lys3 acetylation affects the N-terminal phosphorylation of PFK2 under hypo-osmotic stress.  相似文献   

10.
We have studied the catalytic activity and some other properties of mutants of Escherichia coli plasmid-encoded RTEM beta-lactamase (EC 3.5.2.6) with all combinations of serine and threonine residues at the active-site positions 70 and 71. (All natural beta-lactamases have conserved serine-70 and threonine-71.) From the inactive double mutant Ser-70----Thr, Thr-71----Ser [Dalbadie-McFarland, G., Cohen, L. W., Riggs, A. D., Morin, C., Itakura, K., & Richards, J. H. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6409-6413], an active revertant, Thr-71----Ser (i.e., residue 70 in the double mutant had changed from threonine to the serine conserved at position 70 in the wild-type enzyme), was isolated by an approach that allows identification of active revertants in the absence of a background of wild-type enzyme. This mutant (Thr-71----Ser) has about 15% of the catalytic activity of wild-type beta-lactamase. The other possible mutant involving serine and threonine residues at positions 70 and 71 (Ser-70----Thr) shows no catalytic activity. The primary nucleophiles of a serine or a cysteine residue [Sigal, I. S., Harwood, B. G., & Arentzen, R. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7157-7160] at position 70 thus seem essential for enzymatic activity. Compared to wild-type enzyme, all three mutants show significantly reduced resistance to proteolysis; for the active revertant (Thr-71----Ser), we have also observed reduced thermal stability and reduced resistance to denaturation by urea.  相似文献   

11.
目的:研究大肠杆菌Nα-乙酰基转移酶RimI对人胸腺素α原(ProTα)N末端乙酰化修饰的影响。方法:在大肠杆菌中共表达ProTα与大肠杆菌Nα-乙酰基转移酶RimI,同时设置只表达ProTα的对照菌,分别提取纯化ProTα,利用HPLC检测其发生乙酰化修饰的程度。结果:ProTα的乙酰化修饰发生在翻译后水平,有无RimI的过表达、诱导时间的长短以及这两个因素之间的交叉效应均对ProTα的乙酰化程度有影响,其F值分别为53.8、89.22及16.28,P值均小于0.0001;无论有无RimI过表达,乙酰化的ProTα所占比例在诱导6 h后逐渐升高(P<0.0001);在过表达Ri-mI的菌株中,乙酰化的ProTα在诱导12 h后占37.4%,而在无RimI过表达的菌株中占64.3%;RimI对ProTα乙酰化的抑制作用从诱导6 h后开始显现(P=0.0007)。结论:在大肠杆菌中,过量的Nα-乙酰基转移酶RimI可抑制人胸腺素α原的乙酰化修饰。  相似文献   

12.
Incubation of purified prostaglandin endoperoxide synthetase from sheep vesicular glands with aspirin results in a covalent binding of the acetyl group of acetylsalicylic acid to the protein. During this acetylation, the cyclooxygenase activity is lost, but not the peroxidase activity. The reaction is completed when almost one acetyl group is bound per polypeptide chain (Mr = 68 000). After proteolysis of [3H]acetyl-protein with pronase, radioactive N-acetylserine was obtained. Originally, however, the hydroxyl group of an internal serine residue in the chain is acetylated. The formation of N-acetylserine can be explained by a rapid O leads to N acetyl shift as soon as the NH2 group of serine is liberated. A radioactive dipeptide was isolated from a thermolysin digest of the [3H]acetyl-enzyme containing phenylalanine and serine, phenylalanine being its N-terminal amino acid. Automatic Edman degradation of native and acetylated enzyme showed that only one polypeptide sequence was present: Ala-Asp-Pro-Gly-Ala-Pro-Ala-Pro-Val-Asn-Pro-X-X-Tyr-. The N-terminal sequence has an apolar character.  相似文献   

13.
We present the first large-scale survey of N-terminal protein maturation in archaea based on 873 proteomically identified N-terminal peptides from the two haloarchaea Halobacterium salinarum and Natronomonas pharaonis. The observed protein maturation pattern can be attributed to the combined action of methionine aminopeptidase and N-terminal acetyltransferase and applies to cytosolic proteins as well as to a large fraction of integral membrane proteins. Both N-terminal maturation processes primarily depend on the amino acid in penultimate position, in which serine and threonine residues are over represented. Removal of the initiator methionine occurs in two-thirds of the haloarchaeal proteins and requires a small penultimate residue, indicating that methionine aminopeptidase specificity is conserved across all domains of life. While N-terminal acetylation is rare in bacteria, our proteomic data show that acetylated N termini are common in archaea affecting about 15% of the proteins and revealing a distinct archaeal N-terminal acetylation pattern. Haloarchaeal N-terminal acetyltransferase reveals narrow substrate specificity, which is limited to cleaved N termini starting with serine or alanine residues. A comparative analysis of 140 ortholog pairs with identified N-terminal peptide showed that acetylatable N-terminal residues are predominantly conserved amongst the two haloarchaea. Only few exceptions from the general N-terminal acetylation pattern were observed, which probably represent protein-specific modifications as they were confirmed by ortholog comparison.  相似文献   

14.
Lin HY  Hopkins R  Cao HJ  Tang HY  Alexander C  Davis FB  Davis PJ 《Steroids》2005,70(5-7):444-449
Because the androgen and estrogen nuclear hormone receptors are subject to acetylation, we speculated that the nuclear thyroid hormone receptor-beta1 (TRbeta1), another superfamily member, was also subject to this posttranslational modification. Treatment of 293T cells that contain TRbeta1(wt) with l-thyroxine (T4)(10(-7)M, total concentration) resulted in the accumulation of acetylated TR in nuclear fractions at 30-45 min and a decrease in signal by 60 min. A similar time course characterized recruitment by TR of p300, a coactivator protein with intrinsic transacetylase activity. Recruitment by the receptor of SRC-1, a TR coactivator that also acetylates nucleoproteins, was also demonstrated. Inhibition of the MAPK (ERK1/2) signal transduction cascade by PD 98059 blocked the acetylation of TR caused by T4. Tetraiodothyroacetic acid (tetrac) decreased T4-induced acetylation of TR. At 10(-7)M, 3,5,3'-triiodo-l-thyronine (T3) was comparably effective to T4 in causing acetylation of TR. We studied acetylation in TR that contained mutations in the DNA-binding domain (DBD) (residues 128-142) that are known to be relevant to recruitment of coactivators and to include the MAPK docking site. In response to T4 treatment, the K128A TR mutant transfected into CV-1 cells recruited p300, but not SRC-1, and was subject to acetylation. R132A complexed with SRC-1, but not p300; it was acetylated equally well in both the absence and presence of T4. S142E was acetylated in the absence and presence of T4 and bound SRC-1 under both conditions; this mutant was also capable of binding p300 in the presence of T4. There was no serine phosphorylation of TR in any of these mutants. We conclude that (1) TRbeta1, like AR and ER, is subject to acetylation; (2) the process of acetylation of TR requires thyroid hormone-directed MAPK activity, but not serine phosphorylation of TR by MAPK, suggesting that the contribution of MAPK is upstream in the activation of the acetylase; (3) the amino acid residue 128-142 region of the DBD of TR is important to thyroid hormone-associated recruitment of p300 and SRC-1; (4) acetylation of TR DBD mutants that is directed by T4 appears to be associated with recruitment of p300.  相似文献   

15.
Structures of N-terminally acetylated proteins   总被引:15,自引:0,他引:15  
Primary structures of 250 characterized proteins with N-terminally acetylated residues were correlated with residue distributions and other data. Excluding multiple forms derived from characterized species variants, the structures represent 105 different types of acetylated proteins. Results of comparisons extend previous suggestions based on fewer structures and define relationships further. The N-terminal residue that is acetylated is of a limited type and is frequently a small residue, with a heavy over-representation of serine and alanine. However, the occurrence of methionine at the acetylated position is also high, whereas that of glycine is less frequent than previously estimated. Lysine is over-represented in the N-terminal region, as is aspartic and glutamic acids at a few positions close to the acetylated N-terminus (especially the adjacent position). Finally, distributions of branched-chain residues in the N-terminal region of acetylated proteins are altered in relation to those of proteins in general, isoleucine is over-represented, and leucine and valine are under-represented. The results suggest that alpha-amino-acetylated proteins have special residues in N-terminally non-hydrophobic structures. Data are compatible with a protective function for acetylation but do not exclude further role(s) in processing or other special functions.  相似文献   

16.
ERAP-1 (endoplasmic-reticulum aminopeptidase-1) is a multifunctional enzyme with roles in the regulation of blood pressure, angiogenesis and the presentation of antigens to MHC class I molecules. Whereas the enzyme shows restricted specificity toward synthetic substrates, its substrate specificity toward natural peptides is rather broad. Because of the pathophysiological significance of ERAP-1, it is important to elucidate the molecular basis of its enzymatic action. In the present study we used site-directed mutagenesis to identify residues affecting the substrate specificity of human ERAP-1 and identified Gln(181) as important for enzymatic activity and substrate specificity. Replacement of Gln(181) by aspartic acid resulted in a significant change in substrate specificity, with Q181D ERAP-1 showing a preference for basic amino acids. In addition, Q181D ERAP-1 cleaved natural peptides possessing a basic amino acid at the N-terminal end more efficiently than did the wild-type enzyme, whereas its cleavage of peptides with a non-basic amino acid was significantly reduced. Another mutant enzyme, Q181E, also revealed some preference for peptides with a basic N-terminal amino acid, although it had little hydrolytic activity toward the synthetic peptides tested. Other mutant enzymes, including Q181N and Q181A ERAP-1s, revealed little enzymatic activity toward synthetic or peptide substrates. These results indicate that Gln(181) is critical for the enzymatic activity and substrate specificity of ERAP-1.  相似文献   

17.
The active site residue Asn-437 in protein R1 of the Escherichia coli ribonucleotide reductase makes a hydrogen bond to the 2'-OH group of the substrate. To elucidate its role(s) during catalysis, Asn-437 was engineered by site-directed mutagenesis to several other side chains (Ala, Ser, Asp, Gln). All mutant proteins were incapable of enzymatic turnover but promoted rapid protein R2 tyrosyl radical decay in the presence of the k(cat) inhibitor 2'-azido-2'-deoxy-CDP with similar decay rate constants as the wild-type R1. These results show that all Asn-437 mutants can perform 3'-H abstraction, the first substrate-related step in the reaction mechanism. The most interesting observation was that three of the mutant proteins (N437A/S/D) behaved as suicidal enzymes by catalyzing a rapid tyrosyl radical decay also in reaction mixtures containing the natural substrate CDP. The suicidal CDP-dependent reaction was interpreted to suggest elimination of the substrate's protonated 2'-OH group in the form of water, a step that has been proposed to drive the 3'-H abstraction step. A furanone-related chromophore was formed in the N437D reaction, which is indicative of stalling of the reaction mechanism at the reduction step. We conclude that Asn-437 is essential for catalysis but not for 3'-H abstraction. We propose that the suicidal N437A, N437S, and N437D mutants can also catalyze the water elimination step, whereas the inert N437Q mutant cannot. Our results suggest that Asn-437, apart from hydrogen bonding to the substrate, also participates in the reduction steps of catalysis by class I ribonucleotide reductase.  相似文献   

18.
Tobacco etch virus protease (TEVp) is frequently applied in the cleavage of fusion protein. However, production of TEV protease in Escherichia coli is hampered by low yield and poor solubility, and auto-cleavage of wild type TEVp gives rise to the loss-of-function. Previously it was reported that TEVp S219V displayed more stability, and TEVp variant containing T17S/N68D/I77V and double mutant L56V/S135G resulted in the enhanced production and solubility, respectively. Here, we introduced T17S/N68D/I77V in TEVp S219V to generate TEVpM1 and combined five amino acid mutations (T17S/L56V/N68D/I77V/S135G) in TEVp S219V to create TEVpM2. Among TEVp S219V, and two constructed variants, TEVpM2 displayed highest solubility and catalytic activity in vivo, using EmGFP as the solubility reporter, and the designed fusion protein as in vivo substrate containing an N-terminal hexahistidine tagged GST, a peptide sequence for thrombin and TEV cut and E. coli diaminopropionate ammonia-lyase. The purified TEVp mutants fused with double hexahistidine-tag at N and C terminus showed highest yield, solubility and cleavage efficiency. Mutations of five amino acid residues in TEVpM2 slightly altered protein secondary structure conformed by circular dichroism assay.  相似文献   

19.
The L1 metallo-beta-lactamase from Stenotrophomonas maltophilia is unique among this class of enzymes because it is tetrameric. Previous work predicted that the two regions of important intersubunit interaction were the residue Met-140 and the N-terminal extensions of each subunit. The N-terminal extension was also implicated in beta-lactam binding. Mutation of methionine 140 to aspartic acid results in a monomeric L1 beta-lactamase with a greatly altered substrate specificity profile. A 20-amino acid N-terminal deletion mutant enzyme (N-Del) could be isolated in a tetrameric form but demonstrated greatly reduced rates of beta-lactam hydrolysis and different substrate profiles compared with that of the parent enzyme. Specific site-directed mutations of individual N terminus residues were made (Y11S, W17S, and a double mutant L5A/L8A). All N-terminal mutant enzymes were tetramers and all showed higher K(m) values for ampicillin and nitrocefin, hydrolyzed ceftazidime poorly, and hydrolyzed imipenem more efficiently than ampicillin in contrast to wild-type L1. Nitrocefin turnover was significantly increased, probably because of an increased rate of breakdown of the intermediate species due to a lack of stabilizing forces. K(m) values for monomeric L1 were greatly increased for all antibiotics tested. A model of a highly mobile N-terminal extension in the monomeric enzyme is proposed to explain these findings. Tetrameric L1 shows negative cooperativity, which is not present in either the monomer or N-terminal deletion enzymes, suggesting that the cooperative effect is mediated via N-terminal intersubunit interactions. These data indicate that while the N terminus of L1 is not essential for beta-lactam hydrolysis, it is clearly important to its activity and substrate specificity.  相似文献   

20.
Methionine aminopeptidase and N-terminal acetyltransferase are two enzymes that contribute most to the N-terminal acetylation, which has long been recognized as a frequent and important kind of co-translational modifications [R.A. Bradshaw, W.W. Brickey, K.W. Walker, N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families, Trends Biochem. Sci. 23 (1998) 263-267]. The combined action of these two enzymes leads to two types of N-terminal acetylated proteins that are with/without the initiator methionine after the N-terminal acetylation. To accurately predict these two types of N-terminal acetylation, a new method based on feature selection has been developed. 1047 N-terminal acetylated and non-acetylated decapeptides retrieved from Swiss-Prot database (http://cn.expasy.org) are encoded into feature vectors by amino acid properties collected in Amino Acid Index database (http://www.genome.jp/aaindex). The Maximum Relevance Minimum Redundancy method (mRMR) combining with Incremental Feature Selection (IFS) and Feature Forward Selection (FFS) is then applied to extract informative features. Nearest Neighbor Algorithm (NNA) is used to build prediction models. Tested by Jackknife Cross-Validation, the correct rate of predictors reach 91.34% and 75.49% for each type, which are both better than that of 84.41% and 62.99% acquired by using motif methods [S. Huang, R.C. Elliott, P.S. Liu, R.K. Koduri, J.L. Weickmann, J.H. Lee, L.C. Blair, P. Ghosh-Dastidar, R.A. Bradshaw, K.M. Bryan, et al., Specificity of cotranslational amino-terminal processing of proteins in yeast, Biochemistry 26 (1987) 8242-8246; R. Yamada, R.A. Bradshaw, Rat liver polysome N alpha-acetyltransferase: substrate specificity, Biochemistry 30 (1991) 1017-1021]. Furthermore, the analysis of the informative features indicates that at least six downstream residues might have effect on the rules that guide the N-terminal acetylation, besides the penultimate residue. The software is available upon request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号