首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
European larch (Larix decidua Mill.) and Norway spruce [Picea abies (L.) Karst.] synthesize chlorophyll (Chl) in darkness. This paper compares Chl accumulation in 14-d-old dark-grown seedlings of L. decidua and P. abies after shortterm (24 h) feeding with 5-aminolevulinic acid (ALA). We used two ALA concentrations (1 and 10 mM) fed to cotyledons of both species in darkness and in continuous light. The dark-grown seedlings of L. decidua accumulated Chl only in trace amounts and the seedlings remained etiolated. In contrast, P. abies seedlings grown in darkness were green and had significantly higher Chl content. After ALA feeding, higher protochlorophyllide (Pchlide) content was observed in L. decidua than in P. abies cotyledons incubated in darkness. Although short-term ALA feeding stimulated the synthesis of Pchlide, Chl content did not change significantly in cotyledons incubated in darkness. The Chl accumulation in cotyledons fed with ALA was similar to the rate of Chl accumulation in the controls. Higher Chl accumulation was reported in control samples after illumination: 86.9% in L. decidua cotyledons and 46.4% in P. abies cotyledons. The Chl content decreased and bleaching occurred in cotyledons incubated with ALA in light due to photooxidation. Analyses of Chlbinding proteins (D1 and LHCIIb) by Western blotting proved differences between Chl biosynthesis in L. decidua and P. abies seedlings in the dark and in the light. No remarkable increase was found in protein accumulation (D1 and LHCIIb) after ALA application. Our results showed interspecific difference in Chl synthesis between two gymnosperms. Shortterm ALA feeding did not stimulate Chl synthesis, thus ALA synthesis was not the rate-limiting step in Chl synthesis in the dark.  相似文献   

2.
Glucose cultures of Chlorella vulgaris were grown in white light, in monochromatic light, and in darkness. Difference spectra showed that all wavelengths resulted in increased pigmentation over the dark controls.

Cells irradiated with the 600 mμ beam showed a much higher absorption in the blue end of the spectrum with respect to the red end than is normally found in absorption spectra of white-light grown Chlorella cells.

Dry weight comparisons between monochromatic light and dark controls showed the controls to be somewhat higher. This demonstrated that the monochromatic irradiation produced pigment synthesis but no increase in growth. Dark growth experiments suggested that cultures incubated in darkness on glucose excreted an acidic product.

  相似文献   

3.
Protoplast preparations from barley (Hordeum vulgare L.) enzymatically converted [5-3H]tryptophan to [3H]indole-3-acetic acid (IAA). Both a chloroplast and a crude cytoplasmic fraction, isolated from protoplasts that had previously been fed [5-3H]tryptophan, contained [3H]IAA. Chloroplast and cytoplasmic preparations, isolated from protoplasts and thereafter incubated with [5-3H]tryptophan, also synthesized [3H]IAA, although, in both instances the pool size was less than 50% of that detected in the in-vivo feeds. There were no significant differences in the amounts of [3H]IAA that accumulated in protoplast and chloroplast preparations incubated in light and darkness.Abbreviations HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - RC radiocounting  相似文献   

4.
《Acta Oecologica》2001,22(1):1-8
Seeds of Drosera anglica collected in Sweden were dormant at maturity in late summer, and dormancy break occurred during cold stratification. Stratified seeds required light for germination, but light had to be given after temperatures were high enough to be favorable for germination. Seeds stratified in darkness at 5/1 °C and incubated in light at 12/12 h daily temperature regimes of 15/6, 20/10 and 25/15 °C germinated slower and to a significantly lower percentage at each temperature regime than those stratified in light and incubated in light. Length of the stratification period required before seeds would germinate to high percentages depended on (1) whether seeds were in light or in darkness during stratification and during the subsequent incubation period, and (2) the temperature regime during incubation. Seeds collected in 1999 germinated to 4, 24 and 92 % in light at 15/6, 20/10 and 25/15 °C, respectively, after 2 weeks of stratification in light. Seeds stratified in light for 18 weeks and incubated in light at 15/6, 20/10 and 25/15 °C germinated to 87, 95 and 100 %, respectively, while those stratified in darkness for 18 weeks and incubated in light germinated to 6, 82 and 91 %, respectively. Seeds collected from the same site in 1998 and 1999, stratified in light at 5/1 °C and incubated in light at 15/6 °C germinated to 22 and 87 %, respectively, indicating year-to-year variation in degree of dormancy. As dormancy break occurred, the minimum temperature for germination decreased. Thus, seed dormancy is broken in nature by cold stratification during winter, and by spring, seeds are capable of germinating at low habitat temperatures, if they are exposed to light.  相似文献   

5.
Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of −19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline accumulation. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline—remained at a high concentration in drought-killed leaf zones, but betaine did not disappear as rapidly as proline from viable leaf tissue during recovery.

When [methyl-14C]choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more 14C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of [14C]formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more 14C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with [14C]formate for about 18 hours in darkness, betaine was always the principal 14C-labeled soluble metabolite. This 14C label was located exclusively in the N-methyl groups of betaine, demonstrating that reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of 14C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from [14C]formate.

These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress, and indicate that the betaine so accumulated may be a metabolically inert end product.

  相似文献   

6.
The secretion of newly synthesized insulin in vitro   总被引:9,自引:2,他引:7       下载免费PDF全文
1. An immunological method for the purification of small quantities of insulin has been devised. 2. This method has been used to isolate labelled insulin secreted from pancreas slices incubated in vitro. The insulin had previously been labelled by incubation of the slices with [3H]leucine in vitro. 3. There is some release of labelled insulin when such slices are further incubated in media of low glucose content. When the glucose content of the medium is raised, little additional radioactive insulin is released in the first hour after labelling. However, there is a marked increase in specific radioactivity of insulin released from slices in response to a high concentration of glucose in the second and third hours. Release of labelled insulin is again diminished in the final phase, 4hr. from the start of the experiment. 4. These results are discussed in relation to possible mechanisms of insulin release from the β-cell.  相似文献   

7.
Levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase (EC 4.2.1.24), has been used extensively in the study of ALA formation during greening. When [1-14C]LA is administered to etiolated barley (Hordeum vulgare L. var. Larker) shoots in darkness, 14CO2 is evolved. This process is accelerated when such tissues are incubated with 2 millimolar ALA or placed under continuous illumination. Label from the C-1 of LA becomes incorporated into organic acids, amino acids, sugars, lipids, and proteins during a 4-hour incubation in darkness or in the light. This metabolism is discussed in relation to the use of LA as a tool in the study of chlorophyll synthesis in higher plants.  相似文献   

8.
Nitrogenase (EC 1.7.99.2) activity (acetylene reduction) and nitrogen fixation (15N2 fixation) were measured in cyanobacteria freshly isolated from the coralloid roots of Macrozamia riedlei (Fisch. ex Gaud.) Gardn. Light and gas phase oxygen concentration had marked interactive effects on activity, with higher (up to 100-fold) rates of acetylene reduction and 15N2 fixation in light. The relationship between ethylene formation and N2-fixation varied in the freshly isolated cyanobacteria from 4 to 7 nanomoles of C2H4 per nanomole 15N2. Intact coralloid roots, incubated in darkness and ambient air, showed a value of 4.3. Maximum rates of nitrogenase activity occurred at about 0.6% O2 in light, while in darkness there was a broad optimum around 5 to 8% O2. Inhibition of nitrogenase, in light, by pO2 above 0.6% was irreversible. Measurements of light-dependent O2 evolution and 14CO2 fixation indicated negligible photosynthetic electron transport involving photosystem II and, on the basis of inhibitor studies, the stimulatory effect of light was attributed to cyclic photophos-phorylation. Nitrogenase activity of free-living culture of an isolate from Macrozamia (Nostoc PCC 73102) was only slightly inhibited by O2 levels above 6% O2 and the inhibition was reversible. These cells showed rates of light-dependent O2 evolution and 14CO2 fixation which were 100- to 200-fold higher than those by the freshly isolated symbiont. Furthermore, nitrogenase activity was dependent on both photosynthetic electron transport and photophosphorylation. These data indicate that cyanobacteria within cycad coralloid roots are differentiated specifically for symbiotic functioning in a microaerobic environment. Specializations include a high heterocyst frequency, enhanced permeability to O2, and a direct dependence on the cycad for substrates to support nitrogenase activity.  相似文献   

9.
Isolated cultured roots of Convolvulus arvensis L. were incubated in 0.2 microcurie per milliliter methyl-3H-thymidine for 14 hours, for 64 hours, or for 14 hours followed by transfer to fresh nutrient medium without tritiated thymidine. Autoradiographs of serial, longitudinal sections of roots which were continuously incubated with tritiated thymidine showed that cells of the root cap columella did not undergo DNA synthesis after their formation from the root cap initials. In roots pulse-labeled with tritiated thymidine, the movement of labeled cells through the root cap columella was followed. Labeled cells were displaced at a constant rate of 72 microns per day over a period of 6 to 9 days before they were sloughed off from the root cap. The specialized role of the root cap cells in relation to their distinctive metabolism and longevity is discussed.  相似文献   

10.
Plant tissue culture medium which contained FeEDTA as sole iron source was incubated aseptically in light (16-h photoperiod, 100 mol m-2 s-1 PAR) at 20°C without plant tissue. Soluble iron dropped from an initial concentration of 4 mg 1-1 to less than 0.1 mg 1-1 in 4 weeks. This occurred in both glass and plastic culture vessels. No loss occurred when medium was incubated at 20°C in darkness. A further experiment showed that soluble iron concentration fell to <0.2 mg 1-1 in only 4 days but the loss was slower at lower irradiances.Effects of the loss of soluble iron on plantlet growth were assessed by culturing single node stem segments of in vitro potato (Solanum tuberosum L. cv. Arran Banner) plantlets on medium previously exposed to light. Pre-exposure sufficient to reduce soluble iron concentration to <0.1 mg 1-1 had no inhibitory effect on plantlet development in solidified medium or in liquid medium, except when the liquid medium had been centrifuged before inoculation to remove iron precipitated during pre-exposure to light. The plantlets then became chlorotic.  相似文献   

11.
Ammonium (NH 4 + ) assimilation by Chlamydomonas reinhardii was inhibited when cultures were incubated with methionine sulphoximine (MSO). Methionine sulphoximine inhibited glutamine synthetase acitvity in vitro in extracts from wild-type (2192) and mutant (CC419) cultures. Mutant cultures were insensitive to MSO inhibition in vivo. Nitrogen-starved, wild-type cultures excreted ammonium when they were incubated with MSO in light or in darkness. Ammonium generation was stimulated by glutamine, inhibited by CO2 and stoichiometrically related to loss of protein. Notrogen replete cultures treated with MSO excreted ammonium in light but little was excreted in darkness. Ammonium excretion in darkness, in the presence of MSO, was enhanced by either a period of nitrogen deprivation or by the addition of acetate. Nitrogen deprivation also diminished the lag before ammonium excretion commenced.Abbreviation MSO methionine sulphoximine  相似文献   

12.
The effect of light on [14C]glutamate conversion to free proline during water stress was studied in attached barley (Hordeum vulgare L.) leaves which had been trimmed to 10 cm in length. Plants at the three-leaf stage were stressed by flooding the rooting medium with polyethylene glycol 6000 (osmotic potential-19 bars) for up to 3 d. During this time the free proline content of 10-cm second leaves rose from about 0.02 to 2 mol/leaf while free glutamate content remained steady at about 0.6 mol/leaf. In stressed leaves, the amount of [14C]glutamate converted to proline in a 3-h period of light or darkness was taken to reflect the in-vivo rate of proline biosynthesis because the following conditions were met: (a) free-glutamate levels were not significantly different in light and darkness; (b) both tracer [14C]-glutamate and [14C]proline were rapidly absorbed; (c) rates of [14C]proline oxidation and incorporation into protein were very slow. As leaf water potential fell, more [14C]glutamate was converted to proline in both light and darkness, but at any given water potential in the range-12 to-20 bars, illuminated leaves converted twice as much [14C]glutamate to proline.  相似文献   

13.
This study was designed to investigate the light effect on biosynthesis of antioxidant phenolic compounds by Inonotus obliquus grown in submerged cultures using 1H NMR spectroscopy combining multivariate pattern recognition strategies. I. obliquus were exposed to a range of light conditions and resultant data were compared to those from field-grown sclerotia and the mycelia grown in daylight. Daylight illumination inhibited biosynthesis of davallialactone and phelligridins and other hispidin analogs. Continuous darkness enhanced the formation of phelligridins, davallialactone and inoscavins. Phelligridins and davallialactone also occurred in the mycelia grown in blue and red light with levels lower than those found in darkness. In addition, polyphenols synthesized under daylight conditions showed less potential antioxidant activity than those determined with other light regimes. These findings demonstrate that light regulates biosynthesis of polyphenols in I. obliquus and their subsequent antioxidant activities, and 1H NMR-based metabolic profiling is a cost-effective approach for evaluating light effects on fungal metabolisms.  相似文献   

14.
Pleurochrysis carterae is a marine biflagellate that produces calcified structures called coccoliths. The coccoliths are formed inside the cells and released from the latter after formation. The light dependence of calcium incorporation in this species was studied using45Ca as a tracer. Cells exposed to a repeating cycle of 16 h of light and 8 h of darkness incorporated calcium in extracellular coccoliths at a more or less constant rate throughout a cycle. The cells divided during the dark periods with a concomitant decrease in size. Their size increased during the light periods Coccolith formation in cells incubated in continuous darkness was greatly reduced and finally ceased. These cells did not divide and did not increase in size. Removal of extracellular coccoliths prior to the calcium incorporation experiments stimulated coccolith formation both in dark-incubated cells and in cells exposed to a repeating light-dark cycle. Cells in the stationary phase of growth ceased producing coccoliths. Calcification could be induced in these cells by removal of the extracellular coccoliths. Based on these findings we suggest that cells of Pleurochrysis carterae tend to produce a complete cover of coccoliths and that the available cell surface is a factor controlling coccolith formation.  相似文献   

15.
Spinach leaf (Spinacia oleracea L.) discs infiltrated with [15N]glycine were incubated at 25°C in the light and in darkness for 0, 30, 60 and 90 minutes. The kinetics of 15N-incorporation into glutamine, glutamate, asparagine, aspartate, and serine from [15N]glycine was determined. At the beginning of the experiment, just after infiltration (0 min incubation) serine, and the amido-N of glutamine and asparagine were the only compounds significantly labeled in both light- and dark-treated leaf discs. Incorporation of 15N-label into the other amino acids was observed at longer incubation time. The per cent 15N-enrichment in all amino acids was found to increase with incubation. However, serine and the amido-N of glutamine remained the most highly labeled products in all treatments. The above pattern of 15N-labeling suggests that glutamine synthetase was involved in the initial refixation of 15NH3 derived from [15N]glycine oxidation in spinach leaf discs.

The 15N-enrichment of the amino-N of glutamine was found to increase rapidly from 0 to 19% during incubation in the light. There was a comparatively smaller increase (4-9%) in the 15N-label of the amino-N of glutamine in tissue incubated in darkness. Furthermore the total flux of 15N-label into each of the amino acids examined was found to be greater in tissue incubated in the light than those in the dark. The above evidence indicates the involvement of the glutamine synthetase/glutamate synthase pathway in the recycling of photorespiratory NH3 during glycine oxidation in spinach leaves.

  相似文献   

16.
G. A. Foxon  L. Catt  P. L. Keeling 《Planta》1990,181(1):104-108
The effect of light on the in-vivo rate of starch synthesis in the endosperm of developing wheat (Triticum aestivum cv. Mardler) grain was studied. Individual grains from spikelets grown on the same spike either in darkness or bright light showed no difference in their ability to accumulate radioactivity or to convert this to starch over a 14-h period. Similarly, there was no difference in final grain dry weight between spikes which had been kept in either darkness or normal light from 10 d post anthesis. In contrast, when half-grains (grain which had been bisected longitudinally along the crease region) were incubated by being submerged in culture solution (in vitro) the incorporation of [14C]sucrose into starch was stimulated by increased irradiance. Further experiments showed that the in-vitro dependence on light could be linked to the availability of oxygen. We suggest that in vitro the diffusion of oxygen into the endosperm cells combined with an increased rate of respiration of the tissue during the incubation causes this limitation. Thus the dependence of starch synthesis on light is an artefact of the in-vitro incubation system. The photosynthetic ability of the green pericarp tissue can be used to prevent the development of anoxia in the endosperm tissue of half-grains incubated in vitro. In conclusion, we propose that starch synthesis in vivo is not dependent on oxygen production by photosynthesis in the green layer of the pericarp.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - dpa days post anthesis - PCA perchloric acid  相似文献   

17.
Madore MA 《Plant physiology》1990,93(2):617-622
Mature, variegated leaves of Coleus blumei Benth. contained stachyose and other raffinose series sugars in both green, photosynthetic and white, nonphotosynthetic tissues. However, unlike the green tissues, white tissues had no detectable level of galactinol synthase activity and a low level of sucrose phosphate synthase indicating that stachyose and possibly sucrose present in white tissues may have originated in green tissues. Uptake of exogenously supplied [14C]stachyose or [14C]sucrose into either tissue type showed conventional kinetic profiles indicating combined operation of linear first-order and saturable systems. Autoradiographs of white discs showed no detectable minor vein labelling with [14C]stachyose, but some degree of vein labeling with [14C]sucrose. Autoradiographs of green discs showed substantial vein loading with either sugar. In both tissues, p-chloromercuribenzenesulfonic acid had no effect on the linear component of sucrose or stachyose uptake but inhibited the saturable component. Both tissues contained high levels of invertase, sucrose synthase and α-galactosidase and extensively metabolized exogenously supplied 14C-sugars. In green tissues, label from exogenous sugars was recovered as raffinose-series sugars. In white tissues, exogenous sugars were hydrolysed and converted to amino acids and organic acids. The results indicate that variegated Coleus leaves may be useful for studies on both phloem loading and phloem unloading processes in stachyose-transporting species.  相似文献   

18.
Transverse slices of Fasciola hepatica adults were incubated for up to 3 hr in the presence of [3H]leucine. The incorporation of this tracer molecule into macromolecules and its subsequent movement through the tegument was visualized by electron microscope autoradiography. It appeared that protein synthesis in the Type 1 tegumental cells occurred by a GER/Golgi-mediated mechanism similar to that in vertebrate tissues. Mature T1 secretory bodies entered the surface syncytium via the connecting tubules and accumulated in the basal cytoplasm prior to rapid transit to the surface and discharge at the apical plasma membrane. In adult flukes, which are partly protected from immune attack by virtue of their location, glycocalyx replacement and T1 synthesis may be retarded. The Type 1 cells also appear to manufacture proteins which are not membrane bound. These move with the T1 secretory bodies into the surface syncytium and may have structural or enzymic functions within the cytoplasm.  相似文献   

19.
Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo (LE Fish, AT Jagendorf 1982 Plant Physiol 69: 814-825). With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation, and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of [3H]leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins.  相似文献   

20.
Does light inhibit ethylene production in leaves?   总被引:3,自引:1,他引:2       下载免费PDF全文
The effect of light on the rate of ethylene production was monitored using two different techniques—leaf segments incubated in closed flasks versus intact plants in a flow-through open system. Three different plants were used, viz sunflower (Helianthus annuus), tomato (Lycopersicon esculentum), and soybean (Glycine max). Experiments were conducted both in the presence and absence of 1-aminocyclopropane-1-carboxylic acid (ACC).

The results obtained indicate that, in all three species studied, light strongly inhibits ethylene production when cut leaf segments are incubated in the presence of ACC in closed flasks. When ethylene measurements are made with ACC-sprayed intact plants using a continuous flow system, the effect of light on ethylene production is only marginal. In leaf segments of sunflower and soybean incubated only in distilled H2O in closed flasks, light promotes ethylene production. In tomato, there is no difference between the rate of ethylene production between light and darkness under such conditions. When measurements are made with intact plants in a continuous flow system, the rate of ethylene production is almost identical in light and darkness, in the three plants studied.

It is concluded that the effect of light on cut leaf segments incubated in the presence of ACC in closed flasks can be attributed to the techniques used for these measurements. Light has little effect on ethylene production by intact plants in an open system.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号