首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc homeostasis was investigated in Nostoc punctiforme. Cell tolerance to Zn2+ over 14 days showed that ZnCl2 levels above 22 μM significantly reduced cell viability. After 3 days in 22 μM ZnCl2, ca. 12% of the Zn2+ was in an EDTA-resistant component, suggesting an intracellular localization. Zinquin fluorescence was detected within cells exposed to concentrations up to 37 μM relative to 0 μM treatment. Radiolabeled 65Zn showed Zn2+ uptake increased over a 3-day period, while efflux occurred more rapidly within a 3-h time period. Four putative genes involved in Zn2+ uptake and efflux in N. punctiforme were identified: (i) the predicted Co/Zn/Cd cation transporter, putative CDF; (ii) the predicted divalent heavy-metal cation transporter, putative Zip; (iii) the ATPase component and Fe/Zn uptake regulation protein, putative Fur; and (iv) an ABC-type Mn/Zn transport system, putative zinc ZnuC, ZnuABC system component. Quantitative real-time PCR indicated the responsiveness of all four genes to 22 μM ZnCl2 within 3 h, followed by a reduction to below basal levels after 24 h by putative ZIP, ZnuC, and Fur and a reduction to below basal level after 72 h by putative CDF efflux gene. These results demonstrate differential regulation of zinc transporters over time, indicating a role for them in zinc homeostasis in N. punctiforme.  相似文献   

2.
Gills are the first site of impact by metal ions in contaminated waters. Work on whole gill cells and metal uptake has not been reported before in crustaceans. In this study, gill filaments of the American lobster, Homarus americanus, were dissociated in physiological saline and separated into several cell types on a 30, 40, 50, and 80% sucrose gradient. Cells from each sucrose solution were separately resuspended in physiological saline and incubated in 65Zn2+ in order to assess the nature of metal uptake by each cell type. Characteristics of zinc accumulation by each kind of cell were investigated in the presence and absence of 10 mM calcium, variable NaCl concentrations and pH values, and 100 μM verapamil, nifedipine, and the calcium ionophore A23187. 65Zn2+ influxes were hyperbolic functions of zinc concentration (1–1,000 μM) and followed Michaelis–Menten kinetics. Calcium reduced both apparent zinc binding affinity (K m) and maximal transport velocity (J max) for 30% sucrose cells, but doubled the apparent maximal transport velocity for 80% sucrose cells. Results suggest that calcium, sodium, and protons enter gill epithelial cells by an endogenous broad-specificity cation channel and trans-stimulate metal uptake by a plasma membrane carrier system. Differences in zinc transport observed between gill epithelial cell types appear related to apparent affinity differences of the transporters in each kind of cell. Low affinity cells from 30% sucrose were inhibited by calcium, while high affinity cells from 80% sucrose were stimulated. 65Zn2+ transport was also studied by isolated, intact, gill filament tips. These intact gill fragments generally displayed the same transport properties as did cells from 80% sucrose and provided support for metal uptake processes being an apical phenomenon. A working model for zinc transport by lobster gill cells is presented.  相似文献   

3.
Yang X  Li T  Yang J  He Z  Lu L  Meng F 《Planta》2006,224(1):185-195
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 μM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 μM for 48 h. At 1,000 μM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.  相似文献   

4.
The objective was to determine if a mammary cell line shows glucocorticoid stimulation of Zn uptake, and to determine whether polyamines mediate this stimulation.65Zn uptake by COMMA-1D mouse mammary epithelial cells over a 24-h period increased significantly in cells administered 10−7 or 10−6 M hydrocortisone. Incorporation of65Zn over a 1-h period was not hydrocortisone-responsive, suggesting that these incubation times represent uptake into different pools. The rate of entry into the cells over a 15-min period was significantly increased by supplementing cells with hydrocortisone with or without prolactin. Initially, cells grown in lactogenic hormone-supplemented media (10−6 M hydrocortisone+5μg/mL ovine prolactin) had up to 65% greater65Zn uptake over 24 h than cells in nonsupplemented growth media.65Zn uptake from hormone media with the spermidine synthesis inhibitor methylglyoxal-bis-(guanylhydrazone) (MGBC, 10−5 M) added was less than from growth media. Exogenous spermidine (10−6-10−3 M) added to the MGBG+hormone media increased65Zn uptake. Difluoromethylornithine (DFMO), an inhibitor of spermidine synthesis that blocks ornithine decarboxylase, caused a slight dose-dependent decrease in65Zn uptake over the range 10−6-5×10−3 M(p<0.002) and tended to decrease65Zn-uptake in lactogenic hormone-stimulated cells with 8 h of incubation, but not at other times. These data show that Zn uptake in mammary epithelial cells can be hormonally mediated by glucocorticoids and suggest that polyamines may be intracellular mediators of this effect.  相似文献   

5.
[3H]thymidine uptake increased in Paracentrotus eggs from 7 min after fertilization, reaching a plateau from 20 min until the end of the first cell cycle. Increased nucleoside phosphorylation also occurred. 100 μM uridine reduced the thymidine uptake by 90–95%.  相似文献   

6.
Zinc (Zn) is recognized as an essential nutrient, and is added as a supplement to animal and human diets. There are claims that zinc methionine (ZnMet) forms a stable complex that is preferentially transported into tissues, and this has contributed to uncertainty about conflicting reports on the bioavailability of various Zn compounds. This study evaluated the cellular and intestinal uptake of inorganic and organic forms of Zn. Steady-state uptake of65Zn by human intestine epithelial cells, and monkey kidney fibroblasts was not significantly different with zinc chloride (ZnCl2), ZnMet, or zinc propionate (ZnProp) (P > 0.05). Uptake of65Zn from zinc chelated with EDTA was significantly lower (P < 0.01). In live mice,65Zn uptake by perfused intestine and deposition in intestine and liver showed no significant difference between ZnCl2 and ZnMet. Equimolar [65Zn]methionine and zinc[35S]methionine were prepared according to a patented method that yields “ complexed” Zn. Cellular uptake of the radiolabeled methionine was <0.1% of the radiolabeled Zn from these complexes, indicating separate uptake of the Zn and methionine. Gel filtration did not distinguish between65Zn in ZnCl2, ZnProp, or reagent ZnMet, though feed-grade ZnMet containing >10% protein did give a higher-mol-wt form of65Zn. Results of this study show equivalent uptake of Zn from inorganic and organic compounds, and support recent feed trials on Zn bioavailability.  相似文献   

7.
After propagation of Rhizopus javanicus in defined media containing glucose, urea, and mineral salts in deionized distilled water, the ability of the nonliving biomass to sequester cupric ion was assayed. Growth, uptake capacity (saturation uptake at >1 mM Cu2+ concentration in solution), and biosorptive yield (biomass concentration × uptake capacity) were increased by augmentation of the growth medium with mineral salts once growth was under way. In the stationary phase, the uptake capacity of mycelia, which were normally a poor biosorbent, was improved within 4 h of trace metal addition to the growth medium. Growth of the culture was inhibited by excessive concentrations (0.04 to 40 μM) of metals in the medium in the following order: Cu > Co ≥ Ni > Mn > Mo; zinc was not inhibitory at 40 μM, and chromium was stimulatory at 0.53 μM but slightly inhibitory at higher levels. Iron and potassium phosphate stimulated growth at levels of 0.53 and 40 mM, respectively. When R. javanicus was propagated in a medium with a high salt concentration, exponential growth (0.23 h−1) to a biomass concentration of >3 g/liter and a biosorptive yield of >500 μmol/liter was achieved. It is evident that the powerful biosorbent characteristics of Rhizopus biomass led to depletion of available trace minerals in suspension culture, which in turn limited growth.  相似文献   

8.
The uptake kinetics of zinc (Zn), an essential nutrient for both photosynthesis and calcification, in the tissue of S. pistillata showed that the transport of Zn is composed of a linear component (diffusion) at high concentrations and an active carrier-mediated component at low concentrations. The carrier affinity (K m=28 pmol l−1) was very low, indicating a good adaptation of the corals to low levels of Zn in seawater. Zn accumulation in the skeleton was linear; its level was dependent on the length of the incubation as well as on the external concentration of dissolved Zn. There was also a light-stimulation of Zn uptake, suggesting that zooxanthellae, through photosynthesis, are involved in this process. An enrichment of the incubation medium with 10 nM Zn significantly increased the photosynthetic efficiency of S. pistillata. This result suggests that corals living in oligotrophic waters might be limited in essential metals, such as zinc.  相似文献   

9.
Comparison of plant uptake and plant toxicity of various ions in wheat   总被引:1,自引:0,他引:1  
The effects of varying solution concentrations of manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga) and lanthanum (La) on plant chemical concentrations, plant uptake and plant toxicity were determined in wheat (Triticum aestivum L.) grown in a low ionic strength (2.7×10–3 M solution culture). Increasing the solution concentration of Mn, Zn, Cu, B, Fe, Ga and La increased plant concentrations of that ion. Asymptotic maximum plant concentrations were reached for Zn (10 mg kg DM–1 in the roots), Ga (2 mg kg DM–1 in the tops and 18 mg kg DM–1 in the roots) and La (0.4 mg kg DM–1 in the tops and 4 mg kg DM–1 in the roots). Plant ion concentrations were, on average, 3 times higher in the roots than the tops for Mn and Zn, 7 times for Cu, 9 times for Fe, 12 times for Ga and 15 times for La. In contrast, B concentrations were higher in the tops than the roots by, on average, 2 times. The estimated toxicity threshold (plant concentration at which a rapid decrease in yield occurred) in the tops was 0.4 mg g DM–1 for B, 2 for Zn, 0.075 for Cu and 0.09 for La and in the roots 0.2 mg g DM–1 for B, 5 for Zn, 0.3 for Cu and 3 for La. Plant uptake rates of the ions (as estimated by the slope of the relationship between solution ion concentrations and plant ion concentrations) was in the order B 250 mg kg DM–1 M –1). Plant toxicity was estimated as the reciprocal of the plant concentration that reduced yield by 50% (change in relative yield per mg ion kg DM–1). The plant toxicity of the ions tested was in the order Mn相似文献   

10.
The covalent incorporation of [3H]all-trans-retinoic acid into proteins has been studied in tumoural Leydig (MLTC-1) cells. The maximum retinoylation activity of MLTC-1 cell proteins was 710 ± 29 mean ± SD) fmoles/8 × 104 cells at 37 °C. About 90% of [3H]retinoic acid was trichloroacetic acid-soluble after proteinase-K digestion and about 65–75% after hydrolysis with hydroxylamine. Thus, retinoic acid is most probably linked to proteins as a thiol ester. The retinoylation reaction was inhibited by 13-cis-retinoic acid and 9-cis-retinoic acid with IC50 values of 0.9 μM and 0.65 μM, respectively. Retinoylation was not inhibited by high concentrations of palmitic or myristic acids (250 μM); but there was an increase of the binding activity of about 25% and 130%, respectively. On the other hand, the retinoylation reaction was inhibited (about 40%) by 250 μM lauric acid. After pre-incubation of the cells with different concentrations of unlabeled RA, the retinoylation reaction with 100 nM [3H]RA involved first an increase at 100 nM RA and then a decrease of retinoylation activity between 200 and 600 nM RA. After cycloheximide treatment of the tumoural Leydig cells the binding activity of [3H]RA was about the same as that in the control, suggesting that the bond occurred on proteins in pre-existing cells. (Mol Cell Biochem 276: 55–60, 2005)This paper is dedicated to the memory of Prof. E. Quagliariello.  相似文献   

11.
Sedum alfredii Hance has been identified as a Zn-hyperaccumulating plant species native to China. The characteristics of Zn uptake and accumulation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under nutrient solution and soil culture conditions. The growth of HE was normal up to 1000 μM Zn in nutrient solution, and 1600 mg Zn kg−1 soil in a Zn-amended soil. Growth of the NHE was inhibited at Zn levels ≥250 μM in nutrient solution. Zinc concentrations in the leaves and stems increased with increasing Zn supply levels, peaking at 500 and 250 μM Zn in nutrient solution for the HE and the NHE, respectively, and then gradually decreased or leveled off with further increase in solution Zn. Minimal increases in root Zn were noted at Zn levels up to 50 μM; root Zn sharply increased at higher Zn supply. The maximum Zn concentration in the shoots of the HE reached 20,000 and 29,000 mg kg−1 in the nutrient solution and soil experiments, respectively, approximately 20 times greater than those of the NHE. Root Zn concentrations were higher in the NHE than in the HE when plants were grown at Zn levels ≥50 μM. The time-course of Zn uptake and accumulation exhibited a hyperbolic saturation curve: a rapid linear increase during the first 6 days in the long-term and 60 min in the short-term studies; followed by a slower increase or leveling off with time. More than 80% of Zn accumulated in the shoots of the HE at half time (day 16) of the long-term uptake in 500 μM Zn, and also at half time (120 min) of the short-term uptake in 10 μM 65Zn2+. These results indicate that Zn uptake and accumulation in the shoots of S. alfredii exhibited a down-regulation by internal Zn accumulated in roots or leaves under both nutrient solution and soil conditions. An altered Zn transport system and increased metal sequestration capacity in the shoot tissues, especially in the stems, may be the factors that allow increased Zn accumulation in the hyperaccumulating ecotype of S. alfredii. Section Editor: F. J. Zhao  相似文献   

12.
Histidine has been reported to affect body zinc status by increasing urinary zinc excretion. The effects of experimental histidinemia on distribution of65Zn in anesthetized rats were studied. Infusion ofl-histidine at a rate sufficient to raise plasma concentrations to approximately 2mm for 6h starting 48 h after a single intraperitoneal65Zn injection did not alter65Zn activities in a variety of tissues when compared with anesthetized uninfused animals. However, plasma65Zn and erythrocyte65Zn were decreased, and liver65Zn was increased. If65Zn was injected intravenously during histidine infusion, net accumulation of zinc by some tissues was increased, but uptake by others was reduced relative to uninfused animals. In all cases, however, uptake expressed relative to plasma65Zn levels was increased when allowance was made for the more rapid fall in plasma65Zn during histidine infusion. Similar infusions ofd-histidine produced quantitatively similar effects. Since enzymatic mechanisms and amino acid carriers would be expected to show stereoselectivity, such processes are unlikely to be involved in the zinc distribution changes described. The possibility of zinc transport by a hitherto unidentified carrier is discussed. These experiments confirm that histidinemia can affect zinc status, but any associated changes in urinary zinc excretion do not seem adequate to account for the tissue changes found.  相似文献   

13.
In this study we investigated the saprophyte growth of two arbuscular–mycorrhizal fungi (Glomus mosseae isolate) under increasing Cd or Zn levels and the influence of a selected bacterial strain of Brevibacillus brevis. Microorganisms here assayed were isolated from Cd or Zn polluted soils. B. brevis increased the presymbiotic growth (germination rate growth and mycelial development) of Glomus mosseae. Spore germination and mycelial development of both G. mosseae isolate were reduced as much as the amount of Cd or Zn increased in the growth medium. In medium supplemented with 20 μg Cd mL−1, the spore germination was only 12% after 20 days of incubation, but the coinoculation with B. brevis increased this value to 40% after only 15 days. The addition of 20 μg Cd mL−1 to the growth medium drastically inhibited hyphal development, but the presence of the bacterium increased hyphal growth of G. mosseae from 195% (without Cd) until 254% (with 20 μg Cd mL−1). The corresponding bacterial effect increasing micelial growth ranged from 125% (without Zn) to 232% (200 μg Zn mL−1) in the case of G. mosseae isolated from Zn-polluted soil. Mycelial growth under 5 μg Cd mL−1 (without bacterium) was similarly reduced from that produced at 15 μg Cd mL−1 in the presence of the bacteria. As well, 50 μg Zn mL−1 (without bacterium) reduced hyphal growth as much as 200 μg Zn mL−1 did in the presence of B. brevis. The bacterial effect on the saprophytic growth of G. mosseae in absence of metal may be due to the involvement of indole acetic acid (IAA) produced by these bacteria. The Cd bioaccumulation ability exhibited (76%) by Cd-adapted B. brevis reduced the Cd damage on G. mosseae in Cd-contaminated medium. These capabilities of B. brevis isolates partially alleviate the inhibitory effects of Cd or Zn on the axenic growth of G. mosseae.  相似文献   

14.
The in vitro uptake of zinc by erythrocytes was measured under near-physiological conditions, using65Zn as a radioactive tracer. Because of the presence of serum albumin—a strong zinc ligand—a low concentration of medium free zinc was maintained. Under these conditions a high-affinity carrier for zinc transport over the cell membrane was identified. With human erythrocytes, a Michaelis constant (K m ) of 0.2 nM with respect to free medium zinc was measured and aV max of 4.5 nmoles Zn transported per h/g dry wt. TheK m for medium Zn increases when the size of the internal erythrocytic Zn pool is augmented, whereasV max remains virtually unchanged. A model to explain this phenomenon is proposed. It is suggested that this phenomenon could underlie observations, confirmed here, that the in vitro uptake of Zn by animal erythrocytes depends on the Zn status of the animal.  相似文献   

15.
Extraordinarily high concentrations of zinc (300–500 μg/(g fresh tissue)) are often found in the digestive tract tissue of common carp Cyprinus carpio, and high zinc concentrations (typically >100 μg/(g fresh tissue)) are also found in the kidney, gill, skeletal tissues, and spleen. In the present study, we found that only about 40% of the zinc in the digestive tract tissue of common carp could be extracted by water. However, 0.01 M citrate buffer, pH 6.2 could extract over 90% of the zinc. Subcellular zinc distribution in the tissues of common carp, grass carp Ctenopharyngodon idellus, silver carp Aristichthys nobilis, and tilapia Oreochromis aureus were compared. It was found that zinc concentrations in the cytosol, microsomal and mitochondrial fractions were approximately the same for all four species, being only about 16, 5, and 4 μg/(g fresh tissue), respectively. However, zinc concentrations in the nuclei/cell debris fraction of common carp tissue were much higher (46–370 μg/(g fresh tissue)) than the <14 μg/(g fresh tissue) found in the other three species. From this we conclude that neither water-soluble zinc proteins nor metallothionein could account for the high levels of zinc found in common carp tissues. A preliminary biochemical investigation suggests that the main zinc binding substance(s) in the nuclei/cell debris fraction of digestive tract tissue of common carp was probably a membrane protein(s).  相似文献   

16.
Zinc is both a vital nutrient and an important toxicant to aquatic biota. In order to understand the interplay between nutrition and toxicity, it will be important to determine the mechanisms and the factors that regulate zinc uptake. The mechanism of apical intestinal Zn(II) uptake in freshwater rainbow trout and its potential modification by the complexing amino acid histidine was investigated using brush-border membrane vesicles (BBMVs). Following characterisation of the BBMV preparation, zinc uptake in the absence of histidine was both time- and concentration-dependent and consisted of two components. A saturable phase of uptake was described by an affinity constant of 57±17 μM and a transport capacity of 1867±296 nmol mg membrane protein−1 min−1. At higher zinc levels (>500 μM) a linear, diffusive component of uptake was evident. Zinc transport was also temperature-dependent, with Q10 values suggesting zinc uptake was a carrier-mediated process. Zinc uptake by vesicles in the presence of histidine was correlated to a mono-histidine species (Zn(His)+) at all Zn(II) concentrations examined.  相似文献   

17.
Previous studies in our laboratory have demonstrated that reducing the availability of zinc with the extracellular metal chelator DTPA (diethylenetriaminepentaacetate) enhances, rather than inhibits, the thyroid hormone induction of growth hormone mRNA in GH3 rat anterior pituitary tumor cells. To understand the actions of the chelator on cellular zinc status, we observed the effects of DTPA on 65Zn uptake and retention. DTPA reduced the uptake of 65Zn by GH3 cells from the medium, but when GH3 cells were prelabeled with 65Zn, it resulted in greater retention of the isotope. In primary hepatocytes, DTPA both reduced the uptake of 65Zn from the medium and increased efflux from prelabeled cells. To investigate this difference, we studied the effects of DTPA on radioactive zinc flux in the H4IIE (rat hepatoma), MCF-7 (human breast cancer) and Hs578Bst (nontransformed human mammary) cell lines and in rat primary anterior pituitary cells. DTPA reduced the uptake of 65Zn in all cell lines examined. DTPA increased the retention of 65Zn in prelabeled H4IIE, MCF-7 and Hs578Bst cells but reduced it in primary pituitary cells. Time course experiments showed that 65Zn efflux is shut down rapidly by DTPA in transformed cells, whereas the chelator causes greater efflux from primary hepatocytes over the first 6 h. Experiments with 14C-labeled DTPA confirmed that this chelator does not cross cell membranes, showing that it operates entirely within the medium. Expression of ZnT-1, the efflux transporter, was not affected by DTPA in H4IIE cells. Thus, zinc deprivation enhanced zinc retention in established cell lines but increased efflux from primary cells, perhaps reflecting differing requirements for this mineral.  相似文献   

18.
Progesterone is believed to act at the cell surface to induce the resumption of the meiotic divisions in amphibian oocytes. Analysis of [3H]- and [14C]progesterone uptake and exchange by the plasma-vitelline membrane complex, nucleus and cytoplasm of the isolated Rana oocyte indicates that progesterone uptake by the plasma membrane is saturable, specific and temperature-dependent, and has a slow off-rate. Estradiol (a noninducer) did not compete with progesterone, whereas testosterone (an inducer) blocked progesterone uptake by the membrane complex. Scatchard-type plots indicate an apparent Kd of 5.1·10−7 M over the [progesterone]o range of 0.01–1.0 μM with maximum binding at about 70 fmol per oocyte. Membrane uptake at higher [progesterone]o (2–40 μM) indicates apparent cooperative binding, with saturation up to 10 pmol per oocyte. Cytoplasmic uptake was apparently nonspecific and less temperature-dependent than membrane uptake and steroid concentrations (progesterone and pregnanediones) exceeded water solubility by 30–60 min. Nuclear uptake was saturable and specific but uptake was independent of temperature. A comparison of membrane binding and a physiological response (nuclear breakdown) indicated only about 10% of the membrane sites need be filled to initiate a 50% response.  相似文献   

19.

Background

Stilbene-based compounds show antitumoral, antioxidant, antihistaminic, anti-inflammatory and antimicrobial activities. Here, we evaluated the effect of the trans-resveratrol analogs, pterostilbene, piceatannol, polydatin and oxyresveratrol, against Leishmania amazonensis.

Methodology/Principal Findings

Our results demonstrated a low murine macrophage cytotoxicity of all four analogs. Moreover, pterostilbene, piceatannol, polydatin and oxyresveratrol showed an anti-L. amazonensis activity with IC50 values of 18 μM, 65 μM, 95 μM and 65 μM for promastigotes, respectively. For intracellular amastigotes, the IC50 values of the analogs were 33.2 μM, 45 μM, 29 μM and 30.5 μM, respectively. Among the analogs assayed only piceatannol altered the cell cycle of the parasite, increasing 5-fold the cells in the Sub-G0 phase and decreasing 1.7-fold the cells in the G0-G1 phase. Piceatannol also changed the parasite mitochondrial membrane potential (ΔΨm) and increased the number of annexin-V positive promastigotes, which suggests incidental death.

Conclusion/Significance

Among the analogs tested, piceatannol, which is a metabolite of resveratrol, was the more promising candidate for future studies regarding treatment of leishmaniasis.  相似文献   

20.
Rates of inorganic nitrogen uptake by three Northeast US and three Asian species of Porphyra were compared in short-term incubations to evaluate potential for longer term and larger scale examination of bioremediation of nutrient-loaded effluents from finfish aquaculture facilities. The effects of nitrogen (N) species and concentration, temperature, acclimation history, and irradiance were investigated. Uptake rates increased ca. nine-fold from 20 to 150 μM N. Nitrate and ammonium uptake occurred at similar rates. Irradiance had a strong effect, with uptake at 40 μmol photons m−2 s−1only 55% of uptake at 150 μmol photons m−2 s−1. N-replete tissue took up inorganic nitrogen at rates that averaged only 60% of nutrient-deprived tissue. Although there were species (P. amplissima > (P. purpurea = P. umbilicalis)) and temperature effects (10 °C>5 °C>15 °C), interactions among factors indicated that individual species be considered separately. Overall, P. amplissima was the best Northeast US candidate. It took up ammonium at faster rates than other local species at 10 and 15 °C, two temperatures that fall within the expected range of industrial conditions for finfish operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号