首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholera toxin has been used as a tool to study the effects of cAMP on the activation of B cells but may have effects independent of its ability to elevate cAMP. We found five lines of evidence which suggested that cholera toxin suppressed mitogen-stimulated B cell activation through a cAMP-independent pathway. 1) Cholera toxin (1 microgram/ml) was consistently more suppressive than forskolin (100 microM) despite the induction of higher intracellular cAMP levels by forskolin. 2) Cholera toxin was more suppressive at 1 microgram/ml than at 0.1 microgram/ml despite equivalent elevations of cAMP. 3) Washing B cells following their incubation with cholera toxin reversed much of the inhibition without altering intracellular cAMP levels. 4) The A subunit of cholera toxin, which at high concentrations (10 micrograms/ml) induced levels of cAMP comparable to those induced by cholera toxin (1 and 0.1 microgram/ml), did not inhibit B cell activation. 5) cAMP derivatives at high concentrations were much less effective than was cholera toxin in suppressing B cell activation. Although the elevation of cAMP may cause a mild inhibition of B cell proliferation, we found that even a marked elevation of cAMP did not suppress B cell proliferation, unless the elevation was persistent. We did, however, observe that the degree of toxin inhibition more closely paralleled binding of the toxin to B cells than toxin stimulation of cAMP. This result raised the possibility that binding of cholera toxin to its ganglioside GM1 receptor mediated an inhibitory signal which suppressed B cell proliferation.  相似文献   

2.
Bacillus anthracis, the causative agent of anthrax, secretes two bipartite toxins that help the bacterium evade the immune system and contribute directly to pathogenesis. Both toxin catalytic moieties, lethal factor (LF) and oedema factor (OF), are internalized into the host-cell cytosol by a third factor, protective antigen (PA), which binds to cellular anthrax toxin receptors (ANTXRs). Oedema factor is an adenylate cyclase that impairs host defences by raising cellular cAMP levels. Here we demonstrate that oedema toxin (PA + OF) induces an increase in ANTXR expression levels in macrophages and dendritic cells resulting in an increased rate of toxin internalization. Furthermore, we show that increases in ANTXR mRNA levels depends on the ability of OF to increase cAMP levels, is mediated through protein kinase A-directed signalling and is monocyte-lineage-specific. To our knowledge, this is the first report of a bacterial toxin inducing host target cells to increase toxin receptor expression.  相似文献   

3.
Programmed death (apoptosis) of the rat myelocytic leukemic cell line IPC-81 was triggered by cyclic adenosine monophosphate (cAMP) analogs or by agents (cholera toxin, prostaglandins) increasing the endogenous cAMP level. The induction of cell death by cholera toxin was preceded by increased activation of cAMP-kinase. Cell lysis started already 5 hr after cAMP challenge and was preceded by internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis. The cell suicide could be prevented by inhibitors of macromolecular synthesis. cAMP analogs induced cell death in a positively cooperative manner (apparent Hill coefficient of 2.9), indicating that triggering of the apoptotic process was under stringent control. There was a strong synergism between cAMP analogs complementing each other in the activation of cAMP-dependent protein kinase I (cAKI). No such synergism was noted for analogs complementing each other in the activation of cAKII. It is concluded that apoptosis can be induced solely by activation of cAKI. The IPC-81 cells expressed about four times more cAKI than cAKII. The expression of cAK subunits, on the protein and mRNA levels, was only minimally affected by cholera toxin treatment.  相似文献   

4.
In this report, we have tested the cytotoxicity of two organotin (OT) compounds by flow cytometry on a panel of immortalized cancer cell lines of human and murine origin. Although the OT compounds exhibited varying levels of cytotoxicity, diphenylmethyltin chloride was more toxic than 1,4-bis (diphenylchlorostannyl)p-xylene on all cell lines tested. The OT compounds were found to be highly cytotoxic to lymphoma cell lines with lower toxicity toward the HeLa cervical cancer cell line. In order to discern the mechanism by which cell death was induced, additional experiments were conducted to monitor characteristic changes consistent with apoptosis and/or necrosis. Cell lines treated with the experimental compounds indicated that there was no consistent mode of cell death induction. However, both compounds induced apoptosis in the pro-B lymphocyte cell line, NFS-70. The work presented here also demonstrates that the two OT compounds possess selective cytotoxicity against distinct transformed cell lines.  相似文献   

5.
The effects of direct and indirect activation of adenylyl cyclase on the production of intracellular and extracellular cAMP and cGMP by 13- to 16-day-old cattle embryos were determined. Embryos were incubated for 2 h in a Krebs Ringer bicarbonate medium containing the phosphodiesterase inhibitor isobutyl-methylxanthine, to which stimulating agents forskolin (100 mumol l-1), cholera toxin (2 micrograms ml-1), or both were added. Total (intra- and extracellular) basal cAMP and cGMP concentrations ranged from 6.65 +/- 0.895 to 3.4 +/- 0.708 fmol microgram-1 protein in 13-day-old embryos and from 4.05 +/- 1.151 to 0.19 +/- 0.041 fmol microgram-1 protein in 16-day-old embryos. Forskolin induced an increase (P < 0.001) in cAMP that ranged from 5.4-fold on day 13 to 2.7-fold on day 16, whereas cholera toxin induced an increase (P < 0.001) that ranged from 30-fold at day 13 to 21-fold at day 16, similar to the effect of forskolin and cholera toxin combined. Individually, forskolin and cholera toxin had no effect on cGMP concentrations, but together they induced an increase (P < 0.05). cAMP (P < 0.01) and cGMP (P < 0.001) concentrations decreased with embryo age from day 13 to day 16 for all treatments; the decrease was greater for cGMP than cAMP (5-24-fold versus 1.6-3.3-fold, respectively). It is concluded that inducible adenylyl cyclase is present in 13- to 16-day-old cattle embryos and that the embryos secrete cAMP and cGMP into the incubation medium. In addition, basal and inducible concentrations of cAMP and cGMP decrease with embryo age from day 13 to day 16. These observations indicate that cAMP and cGMP may have a role in the rapid embryonic cell proliferation that occurs at this time or in signalling to the endometrium.  相似文献   

6.
The cytotoxic effect of adenylate cyclase (AC) toxin from Bordetella pertussis on host cells has been attributed to the production of supraphysiologic levels of cyclic AMP by the toxin. We have tested this hypothesis and show that at least two different mechanisms, cAMP accumulation/ATP depletion and oligomerization/pore formation, contribute, perhaps synergistically, to AC toxin-induced cytotoxicity. Wild-type (WT) AC toxin causes cell death associated with an increase in cAMP, a reduction in ATP, activation of caspases 3/7, and increased annexin V and TUNEL staining. In contrast, a non-acylated, enzymatically active, non-haemolytic form of AC toxin is able to increase cAMP, reduce ATP and elicit annexin V staining, but the decrease in ATP and the annexin staining are transient and there is minimal caspase activation, TUNEL staining and cell death. Mutant AC toxins defective in either enzymatic activity or the ability to deliver their enzymatic domain are able to kill J774 cells, without cAMP production, and with minimal caspase activation and TUNEL staining. Comparison of the potencies of WT toxin and those of mutants that only increase cAMP or only create transmembrane pores establishes that at least two mechanisms are contributory and that simply the production of cAMP is not enough to account for the cytotoxicity produced by AC toxin.  相似文献   

7.
A genomic DNA fragment from Saccharomyces cerevisiae which contains the SRA5 (=PDE2) gene, coding for a low Km cAMP-phosphodiesterase, was transfected into Chinese hamster ovary cells. Clones carring the cAMP-phosphodiesterase gene were capable of growth in the presence of cholera toxin, which slows the growth of untransfected cells by elevating their cAMP levels. The cholera toxin-resistant transfected cell lines expressed high levels of cAMP-phosphodiesterase mRNA and cAMP-phosphodiesterase activity. Basal intracellular cAMP levels were not significantly affected by the presence of the yeast cAMP-phosphodiesterase gene, but elevation of cAMP levels in response to cholera toxin or prostaglandin E1 was suppressed. Induction of the cAMP-responsive tyrosine aminotransferase promoter by cholera toxin was also blocked in cell lines carrying the yeast cAMP-phosphodiesterase gene. Cholera toxin-resistant transfected cell lines were sensitive to the growth inhibitory effects of N6,02'-dibutyryladenosine 3',5'-monophosphate, which can be used to bypass the effects of the yeast cAMP-phosphodiesterase.  相似文献   

8.
Progesterone treatment of Xenopus oocytes in vitro causes progression through meiotic cell division. The role of altered intracellular levels of cAMP on the initiation of meiotic cell division has been studied. Basal levels of cAMP averaged 1.5 pmol in oocytes from eight females, and exposure to progesterone caused a rapid drop in cAMP to about 40 to 60% of basal. Half-maximal decreases occurred within 15 to 60 s, and cAMP returned to near basal values by 20 min after progesterone. Theophylline inhibition of progesterone-induced cell division was characterized by a small increase in basal levels of cAMP and a reduced drop in cAMP due to the hormone. Cholera toxin, an activator of adenylate cyclase, was found to be a potent inhibitor of progesterone-induced meiosis, with half-maximal inhibition at 8 times 10(-12) M. In addition, the purified A subunit of cholera toxin was an effective inhibitor of progesterone action when microinjected into oocytes, with half-maximal inhibition occurring at an approximate internal concentration of 1 X 10(-7) M. Cholera toxin alone increased cAMP levels by 20%, but upon addition of progesterone, the level increased transiently to 200% of basal, indicating that the inhibition was due to elevated levels of cAMP. The results support a model in which the initiation of meiotic cell division is regulated by cAMP and protein phosphorylation.  相似文献   

9.
Cholera toxin was used in an attempt to inhibit epidermal growth factor stimulated 3T3 cell division. Instead, cholera toxin alone at low concentrations (10(-10) M), was able to stimulate cell division and could augment EGF stimulated cell division. The mitogenic effect of cholera toxin can occur despite a dramatic increase in the intracellular levels of cAMP in 3T3 cells. Cholera toxin stimulated mitogenesis could not be mimicked by choleragenoid, the binding but inactive subunit of cholera toxin, or by other agents which elevate cAMP levels in 3T3 cells.  相似文献   

10.
11.
Abnormal cellular necrosis was studied in 9.5-11.5-day embryos obtained from zinc-deficient rats. At periods of low maternal zinc status induced by a high intake of a zinc-deficient diet, cell death was observed in those regions of the embryo that were most sensitive to teratogenic insult at that time. As the maternal serum zinc level increased during the fasting phase of the feeding cycle, the degree of necrosis decreased, leaving the tissue histologically more normal even though the embryos were grossly malformed. The mitotic index of cells in the neural epithelium and limb buds of zinc-deficient, non-necrotic embryos was found to be elevated, but there was no evidence of blockage at any particular stage of mitosis. It can be hypothesised that during the early stages of organogenesis, periods of low maternal zinc status initiate unscheduled cell death by some as yet undefined mechanism that in turn, gives rise to the morphological anomalies observed later.  相似文献   

12.
The role of cytotoxicity in digital maldevelopment in CD-1 mouse embryos was examined following dosage with ethylene glycol monomethyl ether (EGME) on gestation day (gd) 11. Patterns of cell necrosis in the forelimb buds of embryos collected from dams given EGME orally at doses of 100, 250 or 350 mg/kg were characterized by staining with Nile blue A. Cell death was induced in the mesenchymal tissue and to some extent in the limb bud ectoderm, including the apical ectodermal ridge in a dose-related manner. The area of preaxial physiological cell necrosis was enlarged by EGME, and the shape of the limb buds was altered 24 hr after treatment. Preaxial tissue and the predigital chondrocyte condensations were reduced or missing following 250 and 350 mg EGME per 1 kg. Light and electron microscope evaluations of forelimb buds revealed the presence of phagocytic vacuoles and condensed, fragmented cytoplasm, which indicate cytotoxicity, as early as 2 hr following EGME, a maximum effect being observed 6 hr after the dose was administered. Although the severity of the cytotoxic response appeared to be dose-related, comparison with the incidence of digital malformations in near-term fetuses indicates that the loss of mesenchymal tissue is partially compensated for as formation of the limb progresses.  相似文献   

13.
Oxytocin (OT), a nonapeptide produced in the paraventricular and the supraoptical nuclei in the hypothalamus has a wide range of effects in the body. However, the role of OT on the gastrointestinal (GI) tract has to be settled. OT may participate in the regulation of motility, secretion, blood flow, cell turnover and release of neurotransmitters and/or peptides in the GI tract, possesses antisecretory and antiulcer effects, facilitates wound healing and is involved in the modulation of immune and inflammatory processes. The present work was conducted to assess the possible therapeutic effects of OT against the acetic acid-induced colonic injury in the rat. METHODS: Colitis was induced by intracolonic administration of acetic acid (5%) in Sprague-Dawley rats (200-250 g). Either saline or OT (0.5 mg/kg) was injected subcutaneously, immediately after the induction of colitis and repeated two times a day for 4 days. On the 4th day, rats were decapitated and distal 8 cm of the colon were removed for the macroscopic and microscopic damage scoring, determination of tissue wet weight index (WI), malondialdehyde (MDA) levels, an end product of lipid peroxidation; glutathione (GSH) levels, a key antioxidant; and myeloperoxidase (MPO) activity, as an indirect index of neutrophil infiltration. Colonic collagen content, as a fibrosis marker was also determined. Lactate dehydrogenase (LDH) and tumor necrosis factor-alpha (TNF-alpha) levels were assayed in serum samples. In the acetic acid-induced colitis, macroscopic and microscopic damage scores, WI, MDA and MPO levels were significantly increased, while GSH levels were decreased when compared to control group (p <0.05-<0.001). Treatment with OT abolished the colitis-induced elevations in damage scores, WI, MDA and MPO levels and restored the GSH levels (p <0.05-0.001). Similarly, acetic acid increased the collagen content of colonic tissues and OT-treatment reduced this value to the level of the control group. Serum LDH and TNF-alpha levels were also elevated in the acetic acid-induced colitis group as compared to control group, while this increase was significantly decreased by OT treatment. The results suggest that OT, which improves the antioxidative state of the colonic tissue and ameliorates oxidative colonic injury via a neutrophil-dependent mechanism, requires further investigation as a potential therapeutic agent in colonic inflammation.  相似文献   

14.
Interleukin 6 (IL-6; also referred to as interferon-beta 2, 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. We examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. Our results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1.  相似文献   

15.
Bordetella pertussis and the other Bordetella species produce a novel adenylate cyclase toxin which enters target cells to catalyze the production of supraphysiologic levels of intracellular cyclic adenosine monophosphate (cAMP). In these studies, dialyzed extracts from B. pertussis containing the adenylate cyclase toxin, a partially purified preparation of adenylate cyclase toxin, and extracts from transposon Tn5 mutants of B. pertussis lacking the adenylate cyclase toxin, were used to assess the effects of adenylate cyclase toxin on human peripheral blood monocyte activities. Luminol-enhanced chemiluminescence of monocytes stimulated with opsonized zymosan was inhibited greater than 96% by exposure to adenylate cyclase toxin-containing extract, but not by extracts from adenylate cyclase toxin-deficient mutants. The chemiluminescence responses to particulate (opsonized zymosan, Leishmania donovani, and Staphylococcus aureus) and soluble (phorbol myristate acetate) stimuli were inhibited equivalently. The superoxide anion generation elicited by opsonized zymosan was inhibited 92% whereas that produced by phorbol myristate acetate was inhibited only 32% by B. pertussis extract. Inhibition of oxidative activity was associated with a greater than 500-fold increase in monocyte cAMP levels, but treated monocytes remained viable as assessed by their ability to exclude trypan blue and continued to ingest particulate stimuli. The major role of the adenylate cyclase toxin in the inhibition of monocyte oxidative responses was demonstrated by: 1) little or no inhibition by extracts from B. pertussis mutants lacking adenylate cyclase toxin; 2) high level inhibition with extract from B. parapertussis, a related species lacking pertussis toxin; and 3) a reciprocal relationship between monocyte cAMP levels and inhibition of opsonized zymosan-induced chemiluminescence using both crude extract and partially purified adenylate cyclase toxin. Pertussis toxin, which has been shown to inhibit phagocyte responses to some stimuli by a cAMP-independent mechanism, had only a small (less than 20%) inhibitory effect when added at concentrations up to 100-fold in excess of those present in B. pertussis extract. These data provide strong support for the hypothesis that B. pertussis adenylate cyclase toxin can increase cAMP levels in monocytes without compromising target cell viability or impairing ingestion of particles and that the resultant accumulated cAMP is responsible for the inhibition of oxidative responses to a variety of stimuli.  相似文献   

16.
17.
Anthrax is the disease caused by the Gram-positive bacterium Bacillus anthracis. Two toxins secreted by B. anthracis - lethal toxin (LT) and oedema toxin (OT) - contribute significantly to virulence. Although these toxins have been studied for half a century, recent evidence indicates that LT and OT have several roles during infection not previously ascribed to them. Research on toxin-induced effects other than cytolysis of target cells has revealed that LT and OT influence cell types previously thought to be insensitive to toxin. Multiple host factors that confer sensitivity to anthrax toxin have been identified recently, and evidence indicates that the toxins probably contribute to colonisation and invasion of the host. Additionally, the toxins are now known to cause a wide spectrum of tissue and organ pathophysiologies associated with anthrax. Taken together, these new findings indicate that anthrax-toxin-associated pathogenesis is much more complex than has been traditionally recognised.  相似文献   

18.
Bordetella pertussis, the whooping cough pathogen, secretes several virulence factors among which adenylate cyclase toxin (ACT) is essential for establishment of the disease in the respiratory tract. ACT weakens host defenses by suppressing important bactericidal activities of the phagocytic cells. Up to now, it was believed that cell intoxication by ACT was a consequence of the accumulation of abnormally high levels of cAMP, generated exclusively beneath the host plasma membrane by the toxin N-terminal catalytic adenylate cyclase (AC) domain, upon its direct translocation across the lipid bilayer. Here we show that host calpain, a calcium-dependent Cys-protease, is activated into the phagocytes by a toxin-triggered calcium rise, resulting in the proteolytic cleavage of the toxin N-terminal domain that releases a catalytically active “soluble AC”. The calpain-mediated ACT processing allows trafficking of the “soluble AC” domain into subcellular organella. At least two strategic advantages arise from this singular toxin cleavage, enhancing the specificity of action, and simultaneously preventing an indiscriminate activation of cAMP effectors throughout the cell. The present study provides novel insights into the toxin mechanism of action, as the calpain-mediated toxin processing would confer ACT the capacity for a space- and time-coordinated production of different cAMP “pools”, which would play different roles in the cell pathophysiology.  相似文献   

19.
Cholera toxin inhibition of progesterone-induced meiosis of Xenopus laevis oocytes in vitro has been correlated with increased cAMP levels. Inhibition of germinal vesicle breakdown (Gvbd) and cAMP increase occurred after a lag period of 2 hr, when cholera toxin was injected, or 4--5 hr, when applied externally. The ability of the maturation-promoting factor (Mpf) to provoke Gvbd when injected into recipient oocytes was found to be dependent upon whether the oocytes had been exposed to cholera toxin alone or to toxin and progesterone. With the former, cAMP levels were elevated and Mpf activity was abolished, whereas with the latter, the increase in cAMP was less pronounced and Mpf activity was observed. Injection of cAMP or its 8-thio derivatives shortly before the appearance of progesterone-induced Mpf abolished Gvbd. If injected earlier or later, no inhibition was observed. In contrast, cholera toxin inhibited maturation even when added several hours before progesterone, suggesting a sustained accumulation of cAMP. No Gvbd occurred when 8-thio-methyl-cAMP was injected together with Mpf. These data suggest that cAMP is involved in the control of the formation/amplification and/or activity of Mpf-a result which may be of general significance in cell division mechanisms.  相似文献   

20.
We have recently identified RFamide-related peptide (RFRP) gene that would encode three peptides (i.e., RFRP-1, -2, and -3) in human and bovine, and demonstrated that synthetic RFRP-1 and -3 act as specific agonists for a G protein-coupled receptor OT7T022. However, molecular characteristics and tissue distribution of endogenous RFRPs have not been determined yet. In this study, we prepared a monoclonal antibody for the C-terminal portion of rat RFRP-1. As this antibody could recognize a consensus sequence among the C-terminal portions of rat, human, and bovine RFRP-1, we purified endogenous RFRP-1 from bovine hypothalamus on the basis of immunoreactivity to the antibody. The purified bovine endogenous RFRP-1 was found to have 35-amino-acid length that corresponds to 37-amino-acid length in human and rat. We subsequently constructed a sandwich enzyme immunoassay using the monoclonal antibody and a polyclonal antibody for the N-terminal portion of rat RFRP-1, and analyzed the tissue distribution of endogenous RFRP-1 in rats. Significant levels of RFRP-1 were detected only in the central nervous system, and the highest concentration of RFRP-1 was detected in the hypothalamus. RFRP-1-positive nerve cells were detected in the rat hypothalamus by immunohistochemical analyses using the monoclonal antibody. In culture, RFRP-1 lowered cAMP production in Chinese hamster ovary cells expressing OT7T022 and it was abolished by pre-treatment with pertussis toxin, suggesting that OT7T022 couples G(i)/G(o) in the signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号