首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of plants as means of decontaminating hydrocarbon-polluted soil has been studied. Ditch reed (Phragmites australis) and alfalfa (Medicago sativa) markedly intensified processes of pollutant destruction, the effect being particularly pronounced in the case of polycyclic aromatic hydrocarbons (PAHs). Comparative analysis of microflora in soils (including those devoid of plants and rhizosphere) demonstrated that, in addition to preventing the pollutant-induced decrease in the amount of heterotrophic microorganisms, the plants stimulated their development, significantly increasing the population of destructors. Effects of plants on major physiological groups of soil microorganisms under conditions of pollution were ambiguous. The rhizosphere consortium of alfalfa was less susceptible to effects of pollutants than that of reed.  相似文献   

2.
The microbial communities and their degradative potential in rhizospheres of alfalfa (Medicago sativa) and reed (Phragmites australis) and in unplanted soil in response to bitumen contamination of soil were studied in pot experiments. According to the results of fluorescence microscopy, over a period of 27 months, bitumen contamination of soil reduced the total number of microorganisms more significantly (by 75%) in unplanted than in rhizosphere soil (by 42% and 7% for reed and alfalfa, respectively) and had various effects on some important physiological groups of microorganisms such as actinomycetes as well as nitrogen-fixing, nitrifying, denitrifying, ammonifying, phosphate-solubilizing, sulphur-oxidizing, cellulolytic and hydrocarbon-degrading microorganisms. The changes in the physiological structure of the microbial community under bitumen contamination were found to hinge on not merely the presence of plants but also their type. It was noted that the rhizosphere microflora of alfalfa was less inhibited by hydrocarbon pollution and had a higher degradative potential than the rhizosphere microflora of reed.  相似文献   

3.
The capability of plants to promote the microbial degradation of pollutants in rhizosphere soil is a principal mechanism of phytoremediation of PAH-contaminated soil. The formation of a specific rhizosphere microbocenosis with a high degradative potential toward contaminants is largely determined by plant species. The comparative PAH-degradation in unplanted soil and in soil planted with reed (Phragmites australis) and alfalfa (Medicago sativa) was studied in pot experiments during 2 years. Both alfalfa and reed successfully remediated contaminated soil by degrading 74.5 and 68.7% of PAHs, respectively. The study of the rhizosphere, rhizoplane, and unplanted-soil microflora in experimental pots showed that alfalfa stimulated the rhizosphere microflora of PAH-contaminated soil more effectively than did reed. Alfalfa clearly enhanced both the total number of microorganisms (1.3 times, according to fluorescence microscopy data) and the rate of the PAH-degrading population (almost seven times, according to plate counting). The degradative potential of its rhizosphere microflora toward PAHs was higher than the degradative activity of the reed rhizosphere. This study provides relevant information for the successful application of alfalfa to phytoremediate PAH-contaminated soil.  相似文献   

4.
The microbiomes of rhizocompartments (nodule endophytes, root endophytes, rhizosphere and root zone) in soya bean and alfalfa were analysed using high‐throughput sequencing to investigate the interactions among legume species, microorganisms and soil types. A clear hierarchical filtration of microbiota by plants was observed in the four rhizocompartments – the nodule endosphere, root endosphere, rhizosphere and root zone – as demonstrated by significant variations in the composition of the microbial community in the different compartments. The rhizosphere and root zone microbial communities were largely influenced by soil type, and the nodule and root endophytes were primarily determined by plant species. Diverse microbes inhabited the root nodule endosphere, and the corresponding dominant symbiotic rhizobia belonged to Ensifer for alfalfa and EnsiferBradyrhizobium for soya bean. The nonsymbiotic nodule endophytes were mainly Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The variation in root microbial communities was also affected by the plant growth stage. In summary, this study demonstrated that the enrichment process of nodule endophytes follows a hierarchical filtration and that the bacterial communities in nodule endophytes vary according to the plant species.  相似文献   

5.
The use of plants and their rhizospheric microorganisms is a promising emerging technology for remediating contaminated soils. The degradation of total petroleum hydrocarbon (TPH) in the rhizospheric and nonrhizospheric soil of three domestic plants, namely, alfalfa (Medicaga sativa) broad beans (Vicia faba) and ryegrass (Lolium perenne) was investigated. The experimental data from the studies of plantmicrobe‐soil interactions implicated the enhancement of TPH degradation by the rhizospheric microbial community. Although the three domestic plants exhibited normal growth in the presence of ~1.0% TPH, the degradation was more profound in the case of leguminous plants. The TPH degradation in the soil cultivated with broad beans and alfalfa was 36.6 and 35.8%, respectively, compared with 24% degradation in case of ryegrass. Such a high correlation between plant type and TPH degradation rates indicate that selection for enhanced rhizosphere degradation may be accomplished by selecting leguminous plants.  相似文献   

6.
The aim of this study was to evaluate the effect of transgenic alfalfa (Medicago sativa L.) plants, in comparison to their non-transgenic counterpart, on the density and physiological profiles of aerobic bacteria in the rhizosphere. Plants of transgenic alfalfa expressing the AMVcp-s gene coding for Alfalfa Mosaic Virus coat protein were cultivated in a climatic chamber. Two methods were used to determine the microbial diversity in rhizospheres of transgenic plants. First, the cultivation-dependent plating method, based on the determination of the density of colony-forming bacteria, and second, a biochemical method using the Biolog™ system, based on the utilization of different carbon sources by soil microorganisms. Statistically significant differences in densities of rhizospheric bacteria between transgenic and non-transgenic alfalfa clones were observed in ammonifying bacteria (GTL4/404-1), cellulolytic bacteria (GTL4/404-1, GTL4/402-2, A5-3-3), rhizobial bacteria (GTL4/402-2), denitrifying bacteria (A5-3-3) and Azotobacter spp. (GTL4/402-2). The highest values of substrate utilization by microbial communities and average respiration of C-sources were determined in non-transgenic alfalfa plants of the isogenic line SE/22-GT2. Carbohydrates, carboxylic acids and amino-acids were the most utilized carbon substrates by both Gram-negative and Gram-positive bacteria. Both, the community metabolic diversity and the utilization of C-sources increased in all alfalfa lines with culture time and regardless of transgenic or non-transgenic nature of lines.  相似文献   

7.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

8.
Hatzinger  P. B.  Alexander  M. 《Plant and Soil》1994,158(2):211-222
A study was conducted of the relationship between the density of several bacterial strains introduced into soil or onto seeds and their abundance in the rhizosphere of alfalfa. The abundance of six species in the rhizosphere was directly correlated with the density of bacteria initially added to soil. The density of six species in the rhizosphere of 15-day-old plants also was directly correlated with the density of each strain in nonrhizosphere soil. Tests of seven species added to soil at four inoculum densities showed that bacteria that survived well in the soil attained the highest densities in the rhizosphere and those that survived poorly in the soil were present at the lowest densities in the rhizosphere. Sixteen of 19 bacterial strains added to alfalfa seeds at 107 or 108 cells per g colonized the rhizosphere of 15-day-old plants, but nearly all of the cells were localized in the upper third of the rhizosphere. A study of 12 bacterial strains that failed to colonize the lower part of the rhizosphere if inoculated onto seeds showed that the bacteria colonized the entire rhizosphere of 15-day-old alfalfa plants if initially inoculated throughout the soil. The data suggest that the density of individual bacterial strains in the rhizosphere is dependent on their density in the soil and that seed inoculation only has an effect on the population in the proximal portion of the alfalfa root system.  相似文献   

9.
Dominant growth strategies of soil microbial communities of mown and unmown meadows were assessed with respect to the constants of saturation and maximal specific growth rate of microorganisms. The microbial community of mown-meadow soil was characterized by a greater biomass and activity due to prevalence of microorganisms with the r strategy, compared to the microbial community of unmown-meadow soil. In contrast to nonrhizosphere soil, rhizosphere soil was dominated by rapidly growing microorganisms with the r strategy. The dependence of the dominant ecological strategy of the rhizosphere microbial community on the vegetation stage of plants has been traced. Study of the effect of plant species on the growth strategies of rhizosphere microorganisms showed that the features of the K strategy are more pronounced in the following rhizosphere microbial communities of grasses at the same growth stage: r strategy–Bromopsis inermis L.–Poa pratensis L., P. compressa L.–Dactylis glomerata L.–Festuca pratensisL.–K strategy. In the absence of limitation by climatic factors, the growth strategies of rhizosphere microorganisms are determined by the competition between microorganisms and plants for nutrients.  相似文献   

10.
Soils and sediments polluted with crude oil are of major environmental concern on various contaminated sites. Outdoors pot experiments were conducted to test the phytodegradation potential of common reed (Phragmites australis) and poplar (Populus nigra × maximowiczii) in fertilised and non-fertilised control treatments. Two topsoils (E, G) of different texture were mixed with crude oil. Soil analysis included hydrocarbon (HC) measurements, detection of labile phosphorus and mineralised nitrogen as well as dehydrogenase activity. Increased HC degradation by native soil biota was clearly related to higher P availability in soil G and to fertilisation in soil E. Except of the non-fertilised common reed treatment, plants did not enhance crude oil degradation. We found even inhibited degradation of high molecular weight HC in the presence of plants together with declining labile phosphorous concentrations due to planting on soil E. Native soil biota were able to use the whole range of crude oil compounds (C10 to C60) as a carbon source in the presence of sufficient nutrient concentrations in soil. This study is the first to show that reduced HC degradation in the higher molecular weight crude oil fraction (C20 to C40) is likely to be a consequence of decreased phosphorus availability for microorganisms in the plant rhizosphere.  相似文献   

11.
The colonization ability of Pseudomonas fluorescens F113rif in alfalfa rhizosphere and its interactions with the alfalfa microsymbiont Sinorhizobium meliloti EFB1 has been analyzed. Both strains efficiently colonize the alfalfa rhizosphere in gnotobiotic systems and soil microcosms. Colonization dynamics of F113rif on alfalfa were similar to other plant systems previously studied but it is displaced by S. meliloti EFB1, lowering its population by one order of magnitude in co-inoculation experiments. GFP tagged strains used to study the colonization patterns by both strains indicated that P. fluorescens F113rif did not colonize root hairs while S. meliloti EFB1 extensively colonized this niche. Inoculation of F113rif had a deleterious effect on plants grown in gnotobiotic systems, possibly because of the production of HCN and the high populations reached in these systems. This effect was reversed by co-inoculation. Pseudomonas fluorescens F113 derivatives with biocontrol and bioremediation abilities have been developed in recent years. The results obtained support the possibility of using this bacterium in conjunction with alfalfa for biocontrol or rhizoremediation technologies.  相似文献   

12.
Abstract Rhizosphere bacterial communities of parental and two transgenic alfalfa (Medicago sativa L.) of isogenic background were compared based on metabolic fingerprinting using Biolog GN microplates and DNA fingerprinting of bacterial communities present in Biolog GN substrate wells by enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). The two transgenic alfalfa expressed either bacterial (Bacillus licheniformis) genes for alpha-amylase or fungal (Phanerochaete chrysosporium) genes for Mn-dependent lignin peroxidase (Austin S, Bingham ET, Matthews DE, Shahan MN, Will J, Burgess RR, Euphytica 85:381–393). Cluster analysis and principal components analysis (PCA) of the Biolog GN metabolic fingerprints indicated consistent differences in substrate utilization between the parental and lignin peroxidase transgenic alfalfa rhizosphere bacterial communities. Cluster analysis of ERIC-PCR fingerprints of the bacterial communities in Biolog GN substrate wells revealed consistent differences in the types of bacteria (substrate-specific populations) enriched from the rhizospheres of each alfalfa genotype. Comparison of ERIC-PCR fingerprints of bacterial strains obtained from substrate wells to substrate community ERIC-PCR fingerprints suggested that a limited number of populations were responsible for substrate oxidation in these wells. Results of this study suggest that transgenic plant genotype may affect rhizosphere microorganisms and that the methodology used in this study may prove a useful approach for the comparison of bacterial communities. Received: 1 June 1998; Accepted: 20 October 1998  相似文献   

13.
Biological nitrogen fixation plays an important role in the nitrogen balance of agricultural ecosystems and provides an essential part of nitrogen nutrition for plants, even in conditions of intensive fertilization. The main agrobiotechnological method for soybean cultivation (Glycine max (L.) Merril) is an application of microbial preparations based on Bradyrhizobium japonicum. Successful inoculation strongly depends on the interactions between the introduced microorganism and the aboriginal rhizosphere microorganisms. To evaluate the composition of diazotrophic communities, a study of the diversity of the molecular marker for nitrogen fixation, the nifH gene, in the samples of soybean rhizosphere soil was carried out. Experiments were performed in the variants when soybean was cultivated without inoculation and after adding bacterial preparations, as well as in enrichment cultures of diazotrophs. The revealed diazotrophic microorganisms demonstrated low level of similarity to the known microorganisms (74–95% identity by nucleotides), and were identified as species of the phyla Firmicutes and Proteobacteria. In the composition of nitrogen-fixing communities in the rhizosphere soil, the microorganisms of the genera Clostridium, Paenibacillus, and Spirochaeta were shown to prevail.  相似文献   

14.
A series of field experiments was established to determine the efficacy of plant-assisted remediation/phytoremediation of weathered (at least 30 years) p,p′-DDE ((2,2-bis(p-chlorophenyl)1, 1-dichloroethylene)) residues in an agricultural soil. Alfalfa, ryegrass, and pole bean were planted in soil containing known amounts of p,p′ -DDE. After approximately 85 d, the crops were harvested and the amount of p,p′-DDE in the bulk soil, near-root zone (soil within area of roots), and rhizosphere was determined. In addition, contaminant levels in the various portions of vegetation were measured. There were statistically significant (p < 0.01) declines in the concentration of p,p′ -DDE in the rhizosphere of alfalfa and ryegrass. The bulk soil concentration of p,p′-DDE ranged from 185 to 230 ng/g soil in the plots containing rye and alfalfa, respectively, whereas the levels in the rhizosphere of these plants at harvest were reduced by up to 39%. Conversely, the concentration of p,p′-DDE in the the bulk soil of pole bean was decreased relative to the amount of contaminant in the rhizosphere: 129 and 191 ng/g soil, respectively. An analysis of the residues of p,p′-DDE in the vegetation shows that no measurable levels of the pesticide were translocated into the shoot system of any of the plants. Concentrations of p,p′-DDE in the roots of the three crops ranged from 25 to 90 ng/g of tissue (oven-dry weight). The data show that highly weathered and recalcitrant residues of p,p′-DDE may be remediated from contaminated soil utilizing these plants under normal growing conditions.  相似文献   

15.
Hydrocarbon-degrading microorganisms (HDM) associated with the rhizosphere of Paspalum vaginatum and Zoysia tenuifolia grown in bioremediated soil were isolated under controlled laboratory conditions. The isolation process was conducted at 30°C and 45°C to isolate mesophilic and thermotolerant microorganisms, respectively, under aerobic conditions. The isolated HDMs were identified using 16S rRNA gene sequencing and fatty acid methyl ester (FAME) analysis. Although differences in the genera of the isolated HDMs occurred between the two grasses, Arthrobacter spp and Bacillus spp were isolated from the rhizosphere of both plants. The efficiency of the isolated microorganisms in degrading a mixture of hydrocarbon compounds (HC) was also assessed. Among the bacterial isolates, Pseudomonas boreopolis was found to be the most effective HC degrader, while the only fungal isolate, Fusarium solani, demonstrated higher degradation rates than most of the bacterial isolates. A mixture of all the microbial isolates demonstrated a high degradation percent of HC. The isolated microorganisms thus appear to work synergistically to degrade efficiently all the tested organic compounds.  相似文献   

16.
Summary A study of the inorganic amendments (N, P and K) to soil, and their effect on the rhizosphere microflora, as well as their relation to the control of wilt of antirrhinum plants caused byVerticillium dahliae Kleb. was done. Ammonium sulphate was the only chemical found to be significantly inhibitory toV. dahliae in vitro. Soil amendments (NPK) affected the rhizosphere microorganisms of the antirrhinum plants. Higher concentration of the chemicals were phytotoxic. It was further observed that ammonium sulphate, and the combined chemicals (NPK 25%) in soil delayed the senescence in healthy plants, suggests that chemical fertilisers affected the host plants directly. Addition of ammonium sulphate (0.25%), calcium nitrate (0.25%, 0.5%) combined NPK (0.25%) to soil caused considerable reduction in disease severity. It is assumed that this reduction may be caused by the (1) fungitoxic nature of the chemicali.e. ammonium sulphate, (2) antagonistic environment for the pathogen in the rhizosphere was boostedi.e. where calcium nitrate was added as soil amendments and (3) reduction in disease severity in soil-amended with combined NPK, may be due to the fact that antagonistic actinomycete population was boosted in the rhizosphere.  相似文献   

17.
The study of the root-associated microbial complexes of affected and healthy rose plants of two cultivars (Grand gala and Royal velvet) grown in a greenhouse showed that the biomass of eukaryotic microorganisms in the rhizoplane and rhizosphere of healthy rose plants and in the surrounding soil was considerably lower than in the same loci of affected plants. In contrast, the biomass of root-associated prokaryotic microorganisms was higher in the case of healthy than in the case of affected rose plants. The root-associated bacterial complexes of both affected and healthy rose plants were dominated by the genera Arthrobacter, Rhodococcus, and Myxobacterium and did not contain phytopathogenic bacteria. The root-associated fungal complex of healthy roses was dominated by fungi of the genus Trichoderma, whereas that of the affected rose plants was dominated by the species Aureobasidium microstictum. The affected cane cuttings and cankers occurring on affected canes were found to contain Coniothyrium fuckelii (the causal fungus of rose stem canker) and sclerotia of Botrytis cinerea (the causal fungus of gray rot). The micromycete complex of healthy rose plants was not so diverse as was the micromycete complex of affected rose plants.  相似文献   

18.
Plants have the ability to promote degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by supporting PAH degrading microorganisms in the rhizosphere (rhizodegradation). The aim of this study was to evaluate if rapeseed oil increases rhizodegradation because various studies have shown that vegetable oils are able to act as extractants for PAHs in contaminated soils and therefore might increase bioavailability of PAHs for microbial degradation. In this study different leguminous and grass species were tested. The results suggested a significant impact of vegetable oil (1 and 3% w/w) on plant growth (decrease of plant height and biomass). The results of the pot experiment showed a decrease in the PAH content of the soil without amendment of rapeseed oil after six months. In soil amended with 1% and 3% of oil, there was no decrease in PAH content within this period. Although no enhancement of PAH degradation by plants could be measured in the bulk soil of the pot experiments, a rhizobox experiment showed a significant reduction of PAH content in the rhizosphere of alfalfa (Medicago sativa cv. Europe). Our investigations also showed significant differences in the degradation behaviour of the 16 individually analysed PAHs.  相似文献   

19.
[背景]马铃薯晚疫病是一种由致病疫霉[Phytophthora infestans(Mont.)de Bary]引起的毁灭性病害,当环境条件适宜时,残留在土壤中的病原菌会侵染马铃薯植株导致病害的发生.[目的]明确健康马铃薯植株与发病植株的根际土壤细菌结构与多样性.[方法]采集马铃薯晚疫病发病地的健康植株根际土壤(M2J...  相似文献   

20.
The aim of this research was to select plant species that could be effective in the phytoremediation of a former oil-sludge pit. Seven crop plants (Triticum aestivum L., Secale cereale L., Avena sativa L., Hordeum vulgare, Sorghum bicolor L. Moench, Panicum miliaceum L., and Zea mays L.), five wild grasses (Lolium perenne L., Bromopsis inermis, Agropyron cristatum L., Agropyrum tenerum L., and Festuca pratensis Huds.), and three legumes (Medicago sativa L., Trifolium pratense L., and Onobrychis antasiatica Khin.) were screened for phytotoxicity, including the assessment of germination, shoot biomass, and root biomass, in a pot experiment. The estimation of oil-sludge degradation in the root zone of the tested plants showed that rye accelerated cleanup most effectively, degrading all of the main contaminant fractions in the oil sludge by a total of 52%. Although alfalfa had a lower phytoremediation potential than did rye, it maintained large numbers of soil microorganisms, including polycyclic aromatic hydrocarbon degraders, in its rhizosphere. Rye and alfalfa were chosen for a large-scale study to remediate an oil-sludge pit on the grounds of a petroleum refinery. Remediation monitoring confirmed the effectiveness of rye: the oil-sludge content decreased consistently for 3 years and remained low in comparison with the results from other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号