首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chirality》2017,29(6):304-314
S‐naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2‐ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween‐80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2‐ethoxyethanol, isooctane and Tween‐80 were 3:7 and 0.1% (v /v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively.  相似文献   

2.
Summary Continuous hydrolysis reaction was carried out in glass-column by using lipase fromCandida rugosa immobilized on DEAE-Sephadex A50. Substrate olive oil dissolved in hydrophobic organic solvent (isooctane) was supplied into the reactor with a concurrent stream of aqueous buffer. Stability of the immobilized enzyme was greatly increased in higher substrate concentration. Glyccrol added in the aqueous stream showed stabilizing effect against the organic solvent; half life was extended from 220 hrs to 450 hrs by 15% glycerol supplemented at 30°C.  相似文献   

3.
The hydrolysis of olive oil catalyzed by Candida rugosa lipase in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane and the synthetic sodium bis(2-ethylhexyl polyoxyethylene)sulfosuccinate (MAOT)/isooctane reverse micellar systems was investigated in a polysulfone hollow fiber membrane reactor with recycle of the reaction mixture. Lipase was completely retained by the membrane while olive oil and oleic acid freely passed through. The retention of reverse micelles depended on W 0 (molar ratio of water to surfactant). At an olive oil concentration of 0.23 mol l–1 the final substrate conversion in the MAOT micellar system was about 1.4 times of that in the AOT micellar system.  相似文献   

4.
In this study, we invetigated the hydrolysis of olive oil catalyzed by a surfactant-coatedCandida rugosa lipase in a hydrophilic polyacrylonitrile hollow fiber membrane reactor and then compared the results to those using the native lipase. The organic phase was passed through the hollow inner fibers of the reactor and consisted of either the coated lipase and olive oil dissolved in isooctane or the coated lipase dissolved in pure olive oil. The aqueous phase was pumped through the outer space. After 12 h and with conditions of 30°C, 0.12 mg enzyme/mL and 0.62 M olive oil, the substrate conversion of the coated lipase reached 60%. This was twice the conversion for the same amount of native lipase that was pre-immobilized on the membrane surface. When using pure olive oil, after 12 h the substrate conversion of the coated lipase was 50%. which was 1.4 times higher than that of the native lipase.  相似文献   

5.
Candida rugosa lipase solubilized in organic solvents in the presence of both surfactant and water could catalyze the hydrolysis of triglycerides, and kinetic analysis of the lipase-catalyzed reaction was found to be possible in this system. Among eight organic solvents tested, isooctane was most effective for the hydrolysis of olive oil in reversed micelles. Temperature effect, pH profile, K(m,app) and V(max,app) were determined. Among various chemical compounds, Cu(2+), Hg(2+), and Fe(3+) inhibited lipase severely. But the enzyme activity was restorable partially by adding histidine or glycine to the system containing these metal ions. The enzyme activity was dependent on R (molar ratio of water to surfactant) and maximum activity was obtained at R = 10.5. Upon addition of glycerol to the reversed micelles, lipase activity was affected in a different fashion depending on the R values. Stability of the lipase in reversed micelles was also dependent on R, and it was most stable at R = 5.5.  相似文献   

6.
Candida rugosa lipase immobilized by adsorption on swollen Sephadex LH-20 could almost completely hydrolyze 60% (v/v) olive oil in isooctane. Kinetic analysis of the lipase-catalyzed hydrolysis reaction was found to be possible in this system. Amount of fatty acids produced was linearly proportional to the enzyme concentration of 720 mug/g wet gel. The specific enzyme activity was 217 units/mg protein at 60% (v/v) olive oil concentration. When the initial rate is plotted versus concentration of olive oil, this system did not follow Michaelis-Menten kinetics. Maximum activity was obtained at pH 7, but optimum temperature shifted towards higher one with the increase of olive oil concentration. Among the various chemical compounds tested, Hg(2+) and Fe(2+) inhibited the lipase seriously. As the concentration of olive oil increased, the rate of the hydrolysis also increased, but degree of the hydrolysis was observed to decrease. The supply of water from the inside of the gel to the surface of the gel was the main factor for the control of the rate of hydrolysis in batch hydrolysis. The immobilized lipase was used to hydrolyze olive oil two times. Achievement of chemical equilibrium took a longer time with the addition of water and the degree of hydrolysis decreased in the second consecutive trial. After the second hydrolysis trial, the gels were regenerated in a packed column first by eluting out both residual fatty acids around the gel particles and the accumulated glycerol with ethanol and then with 0.05M phosphate buffer, pH 7. The immobilized lipase on the regenerated gel showed the same hydrolysis activity as the original one.  相似文献   

7.
Summary Candida rugosa lipase immobilized by adsorption on the swollen Sephadex LH-20 and Sephadex LH-60 could effectively hydrolyze olive oil at high concentration in a reverse phase system. Initial water content was found to be the most important factor that determines both the hydrolysis rate and the degree of hydrolysis; approximately 54% of water in the gels was readily utilized.  相似文献   

8.
Continuous hydrolysis of olive oil by immobilized lipase in organic solvent   总被引:4,自引:0,他引:4  
Lipase (EC 3.1.1.3) from Candida rugosa was immobilized with DEAE-Sephadex A50, Sephadex G50, Sephadex LH-20, Amberlite IRA94, and Amberlite XAD-7. The enzye immobilized with DEAE-Sephadex A50 was found to be most effective for continuous hydrolysis of olive oil in isooctane. For the continuous reaction, 0.2 g of dry immobilized enzyme was swollen with predetermined amount of water, and packed in a glass column reactor. When the organic solvent (Isooctane) containing olive oil substrate was cocurrently fed with aqueous buffer, the two phases were evenly distributed throughout the packed bed without surfactant supplement or prior mixing of the two phases. A small amount of the surfactant (AOT) was used only in packing procedure, and no additional surfactant was necessary thereafter. Effects of initial water content of the swollen gel, buffer types, and strength were examined in the continuous reaction. Our results suggest that the operational half-life was affected by desorption of the bound enzyme. Under the conditions of 20% olive oil in isooctane and 25 mM triethanolamine buffer (pH 7.0), operational half life was 220 h at 30 degrees C. The reactor was also operable with n-hexane, but the operational stability of the immobilized enzyme in n-hexane was only half of that in isooctane. Our results indicate that various enzyme carrier having hydrophilic or amphiphilic properties could be used for two-phase continuous reaction in packed-bed column, reactor without any surfactant supply or prior dispersion of the two immiscible phases. (c) 1992 John Wiley & Sons, Inc.  相似文献   

9.
The kinetics of enzymatic hydrolysis of rice bran oil in isooctane by immobilized Candida rugosa lipase in a batch reactor showed competitive inhibition by isooctane with a dissociation constant, K1, of 0.92 M. Continuous hydrolysis of rice bran oil was performed in recycling, packed bed reactor with 4352 U of immobilized lipase; the optimum recycle ratio was 9 and the operational half-life was 360 h without isooctane but 288 h with 25% (v/v) isooctane in rice bran oil.  相似文献   

10.
Yan J  Liu S  Hu J  Gui X  Wang G  Yan Y 《Bioresource technology》2011,102(14):7154-7158
Novel modification methods for lipase biocatalysts effective in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids (PUFAs) were described. Based on conventional immobilization in single aqueous medium, immobilization of lipase in two phase medium composed of buffer and octane was employed. Furthermore, immobilization (in single aqueous or in two phase medium) coupled to fish oil treatment was integrated. Among these, lipase immobilized in two phase medium coupled to fish oil treatment (IMLAOF) had advantages over other modified lipases in initial reaction rate and hydrolysis degree. The hydrolysis degree increased from 12% with the free lipase to 40% with IMLAOF. Strong polar and hydrophobic solvents had negative impact on immobilization-fish oil treatment lipases, while low polar solvents were helpful to maintain the modification effect of immobilization-fish oil treatment. After five cycles of usage, the immobilization-fish oil treatment lipases still maintained more than 80% of relative hydrolysis degree.  相似文献   

11.
Batch and continuous hydrolysis of olive oil in an organic-aqueous two-phase system using the live whole cell of Pseudomonas putida 3SK as a source of a lipase is investigated. The strain was not only fully viable and grown well, but also produced extracellular lipase simultaneously. The degree of hydrolysis, depending on olive oil concentration in the solvents, was maximal at 13.5% (w/v) and decreased with the increase of the substrate concentration. At the optimal condition, a degree of hydrolysis higher than 95% was achieved with 24 h at 30 degrees C when the reaction was carried out in a two-phase batch stirred reactor. For long-term operation a continuous stirred reactor was designed. When the reaction was carried out in a continuous stirred reactor, the degree was hydrolysis reached 86% at a dilution rate of 0.2 h(-1). Satisfactory performance of a two-phase bioreactor was obtained in a long-term continous operation, which lasted for at least 30 days by feeding organic solvent containing olive oil and aqueous media separately. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
The hydrolysis of olive oil catalyzed by Chromobacterium viscosum lipase (EC 3.1.1.3) in a water/isooctane two-phase system was carried out both under ultrasound and conventional stirring. The maximum activity of lipase in the ultrasonicated system was 1.75 times higher than that in the stirred system. The lipase activity was dependent on ultrasonic power and volume ratio of isooctane to water. The optimum reaction temperature in both systems was around 25°C. The stability of lipase at 25°C in the ultrasonicated system decreased more rapidly than that in the stirred system. In the presence of exogenous oleic acid, however the half-life of lipase in the ultrasonicated system was improved to a value, which was respectively half and twice of that in stirred systems with and without oleic acid. The maximum reaction rate (Vmax) was increased by ultrasonication whereas the Michaelis constant (Km) remained unaltered.  相似文献   

13.
脂肪酶在微乳液和微乳液凝胶中催化辛酸辛醇的酯化反应   总被引:4,自引:0,他引:4  
脂肪酶在合成反应中具有很高的区域选择性和立体选择性 ,已广泛用于食品工业和药物工业[1,2 ] ,在有机介质中的脂肪酶催化反应已有较多研究[3 ,4 ] 。微乳液一般由表面活性剂、助表面活性剂、油和水等组份组成 ,它是一种热力学稳定、光学透明、宏观均匀而微观不均匀的体系 ,能提供酶催化所需要的巨大油 /水界面[5] 。而将脂肪酶增溶于油包水(W /O)微乳液中的纳米级“水池”中 ,可使酶以分子水平分散[6] ,图 1(a) ,从而可用来模拟细胞微环境中的反应。油包水微乳液中的酶可通过加入明胶而制成固定化酶 ,含明胶的微乳液凝胶 (MBGs)最早…  相似文献   

14.
The cell-bound lipase from Rhizopus chinensis CCTCC M201021 with high catalysis ability for ester synthesis was located as a membrane-bound lipase by the treatments of Yatalase™ firstly. In order to improve its synthetic activity in non-aqueous phase, the pretreatments of this enzyme with various organic solvents were investigated. The pretreatment with isooctane improved evidently the lipase synthetic activity, resulting in about 139% in relative synthetic activity and 115% in activity recovery. The morphological changes of mycelia caused by organic solvent pretreatments could influence the exposure of the membrane-bound enzyme from mycelia and the exhibition of the lipase activity. The pretreatment conditions with isooctane and acetone were further investigated, and the optimum effect was obtained by the isooctane pretreatment at 4°C for 1 h, resulting in 156% in relative synthetic activity and 126% in activity recovery. When the pretreated lipases were employed as catalysts for the esterification production of ethyl hexanoate in heptane, higher initial reaction rate and higher final molar conversion were obtained using the lipase pretreated with isooctane, compared with the untreated lyophilized one. This result suggested that the pretreatment of the membrane-bound lipase with isooctane could be an effective method to substitute the lyophilization for preparing biocatalysts used in non-aqueous phase reactions.  相似文献   

15.
Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.  相似文献   

16.
Pig bone was examined for its suitability as a support material for lipase immobilization. It was observed that pig bone (PB) particles dispersed readily in both polar and nonpolar solvents, and lipase was easily adsorbed. In particular lipase adsorbed on olive oil-soaked pig bone (OPB) particles exhibited a higher hydrolytic activity than that in lipase adsorbed on a selection of other representative supports, regardless of removing the presoaked olive oil from the particles after immobilization of lipase. The optimum pH and temperature for hydrolytic activity of OPB-adsorbed lipase were the same as those for free lipase, although thermal resistance was increased by immobilization. When OPB-adsorbed lipase was used for repeated batch reactions of olive oil hydrolysis, an activity of more than 80% of the initial activity of each run could he retained after 46 h reaction. The results suggest that PB is an excellent support material.  相似文献   

17.
Candida rugosa lipase (EC 3.1.1.3.) was immobilized in a hydrophilic polyurethane foam and used in the hydrolysis of olive oil, in H-hexane. The results obtained were compared with those from a previous study, in which the same lipase preparation was used in the esterification of ethanol with butyric acid.

The initial rate of hydrolysis increased exponentially with increasing olive oil concentration. In contrast, for the esterification reaction, Michaelis-Menten kinetics with inhibition by both substrates, had been observed.

The effect of medium viscosity, stirring conditions and size of immobilization particles could not explain the observed kinetics of the hydrolytic reaction. However, a direct relationship was observed between the log P values of the reaction medium and the initial rate of hydrolysis, i.e., activation of the immobilized Candida rugosa lipase appears to be promoted by a high hydrophobicity of the reaction medium.

In the case of the esterification reaction, no similar correlation was found.  相似文献   

18.
Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (≈90 mmol L(-1)). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex(?) 100 L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)).  相似文献   

19.
Lipase from Candida rugosa was immobilized by adsorption onto a macroporous copolymer support. Under optimum conditions the maximum amount of protein bound was 15.4 mg/g and the immobilization efficiency was 62%. The kinetics of lipase binding to the selected polymer carrier was assessed by using a general model of topochemical reactions. The effect of temperature on adsorption was thoroughly investigated, as was the adsorption mechanism itself. Analysis of the proposed kinetic model and the specific kinetic parameters measured suggest that surface kinetics control the adsorption process. According to the activation energy (E a) and the rate constant, k, the enzyme has rather a high affinity for the support's active sites. The immobilized enzyme was used to catalyse the hydrolysis of palm oil in a lecithin/isooctane reaction system, in which the enzyme's activity was 70% that of the free enzyme. Kinetic parameters such as maximum velocity (V max) and the Michaelis constant (K m) were determined for the free and the immobilized lipase. Following repeated use, the immobilized lipase retained 56% of its initial activity after the fifth hydrolysis cycle. Received: 3 April 1998 / Received revision: 28 July 1998 / Accepted: 29 July 1998  相似文献   

20.
A specific lipase for the hydrolysis of Tween present in a Sclerotinia lipase preparation was fractionated by various extraction procedures, ion-change resin treatment and dialysis. The activity of the Tween-lipase on olive oil was significant in Increasing the hydrolysis of the olive oil by combination with various other lipases. Also, it seemed to develop with the change in the state of emulsion of the reaction mixture during hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号