首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chronic inflammatory processes are associated with the pathophysiology of Alzheimer's disease (AD), and it has been proposed that treatment with non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk for AD. Here we report that various NSAIDs, such as the cyclooxygenase inhibitors, nimesulide, ibuprofen and indomethacin, as well as thalidomide (Thal) and its non-teratogenic analogue, supidimide, significantly stimulated the secretion of the non-amyloidogenic alpha-secretase form of the soluble amyloid precursor protein (sAPP alpha) into the conditioned media of SH-SY5Y neuroblastoma and PC12 cells. These NSAIDs markedly reduced the levels of the cellular APP holoprotein, further accelerating non-amyloidogenic processes. sAPP alpha release, induced by nimesulide and Thal, was modulated by inhibitors of protein kinase C and Erk mitogen-activated protein (MAP) kinase. Furthermore, in results complementary to the inhibitor studies, we show for the first time that NSAIDs can activate the Erk MAP kinase signaling cascade, thus identifying a novel pharmacology mechanism of NSAIDs. Our findings suggest that NSAIDs and Thal might prove useful to favor non-amyloidogenic APP processing by enhancing alpha-secretase activity, thereby reducing the formation of amyloidogenic derivatives, and therefore are of potential therapeutic value in AD.  相似文献   

2.
A balance between the proteolytic processing of amyloid precursor protein APP through the amyloidogenic and the non-amyloidogenic pathways controls the production and release of amyloid β-protein, whose accumulation in the brain is associated to the onset of Alzheimer Disease. APP is also expressed on circulating platelets. The regulation of APP processing in these cells is poorly understood. In this work we show that platelets store considerable amounts of APP fragments, including sAPPα, that can be released upon stimulation of platelets. Moreover, platelet stimulation also promotes the proteolysis of intact APP expressed on the cell surface. This process is supported by an ADAM metalloproteinase, and causes the release of sAPPα. Processing of intact platelet APP is promoted also by treatment with calmodulin antagonist W7. W7-induced APP proteolysis occurs through the non-amyloidogenic pathway, is mediated by a metalloproteinase, and causes the release of sAPPα. Co-immunoprecipitation and pull-down experiments revealed a physical association between calmodulin and APP. These results document a novel role of calmodulin in the regulation of non-amyloidogenic processing of APP.  相似文献   

3.
Several variants of the serotonin 5-HT4 receptor are known to be produced by alternative splicing. To survey the existence and usage of exons in humans, we cloned the human 5-HT4 gene. Based on sequence analysis seven C-terminal variants (a-g) and one internal splice variant (h) were found. We concentrated in this study on the functional characterization of the novel splice variant h, which leads to the insertion of 14 amino acids into the second extracellular loop of the receptor. The h variant was cloned as a splice combination with the C-terminal b variant; therefore, we call this receptor 5-HT4(hb). This novel receptor variant was expressed transiently in COS-7 cells, and its pharmacological profile was compared with those of the previously cloned 5-HT4(a) and 5-HT4(b) isoforms, with the latter being the primary reference for the h variant. In competition binding experiments using reference 5-HT4 ligands, no significant differences were detected. However, the broadly used 5-HT4 antagonist GR113808 discriminated functionally among the receptor variants investigated. As expected, it was an antagonist on the 5-HT4(a) and 5-HT4(b) variant but showed partial agonistic activity on the 5-HT4(hb) variant. These data emphasize the importance of variations introduced by splicing for receptor pharmacology and may help in the understanding of conflicting results seen with 5-HT4 ligands in different model systems.  相似文献   

4.
We report the cloning and the deduced amino acid sequence of cDNAs encoding both the human serotonin 5-HT2 and 5-HT1C receptors. The human 5-HT2 and 5-HT1C receptors shared 87% and 90% amino acid homology, respectively, with their rat counterparts. The most divergent regions of the 5-HT2 receptor between human and rat were the N-terminal extracellular domain (75% homology) and the C-terminal intracellular domain (67% homology between amino acids 426-474). The greatest variability between the human and rat 5-HT1C receptors were at the N-terminal extracellular domain (78% homology) and the third cytoplasmic loop (71% homology). The availability of the cloned human 5-HT2 and 5-HT1C receptors will help facilitate the further understanding of the molecular pharmacology and physiology of these receptors.  相似文献   

5.
Multiple PDZ domain protein 1 (MUPP1), a putative scaffolding protein containing 13 PSD-95, Dlg, ZO-1 (PDZ) domains, was identified by a yeast two-hybrid screen as a serotonin2C receptor (5-HT2C R)-interacting protein (Ullmer, C., Schmuck, K., Figge, A., and Lubbert, H. (1998) FEBS Lett. 424, 63-68). MUPP1 PDZ domain 10 (PDZ 10) associates with Ser458-Ser-Val at the carboxyl-terminal tail of the 5-HT2C R. Both Ser458 and Ser459 are phosphorylated upon serotonin stimulation of the receptor (Backstrom, J. R., Price, R. D., Reasoner, D. T., and Sanders-Bush, E. (2000) J. Biol. Chem. 275, 23620-23626). To investigate whether phosphorylation of these serines in the receptor regulates MUPP1 interaction, we used several approaches. First, we substituted the serines in the receptor carboxyl tail with aspartates to mimic phosphorylation (S458D, S459D, or S458D/S459D). Pull-down assays demonstrated that Asp mutations at Ser458 significantly decreased receptor tail interaction with PDZ 10. Next, serotonin treatment of 5-HT2C R/3T3 cells resulted in a dose-dependent reduction of receptor interaction with PDZ 10. Effects of serotonin on receptor-PDZ 10 binding could be blocked by pretreatment with a receptor antagonist. Alkaline phosphatase treatment reverses the effect of serotonin, indicating that agonist-induced phosphorylation at Ser458 resulted in a loss of MUPP1 association and also revealed a significant amount of basal phosphorylation of the receptor. We conclude that 5-HT2C R interaction with MUPP1 is dynamically regulated by phosphorylation at Ser458.  相似文献   

6.
The cDNA of RDC4, a putative receptor of the G protein-coupled receptor family, has been cloned by PCR methodology. The primary structure of this receptor showed homology with the serotonin 5-HT1A receptor. In this work, RDC4 mRNA has been injected in Y1 adrenal cells and Xenopus oocytes and RDC4 cDNA has been transfected transiently in cos-7 cells. In all these systems serotonin elicited a rise in cyclic AMP levels. Binding studies on membranes of the transfected cos-7 cells using [3H]-LSD showed a pattern of drug affinities consistent with the known properties of a 5-HT1D receptor. RDC4 therefore codes for a 5-HT1D receptor which in the studied systems is positively coupled to adenylate cyclase.  相似文献   

7.
The serotonin 5-hydroxytryptamine (5-HT4) receptor is of potential interest for the treatment of Alzheimer's disease because it increases memory and learning. In this study, we investigated the effect of zinc metalloprotease inhibitors on the amyloid precursor protein (APP) processing induced by the serotonin 5-HT4 receptor in vitro. We show that secretion of the non-amyloidogenic form of APP, sAPPalpha induced by the 5-HT4(e) receptor isoform was not due to a general boost of the constitutive secretory pathway but rather to its specific effect on alpha-secretase activity. Although the h5-HT4(e) receptor increased IP3 production, inhibition of PKC did not modify its effect on sAPPalpha secretion. In addition, we found that alpha secretase activity is regulated by the cAMP-regulated guanine nucleotide exchange factor, Epac and the small GTPase Rac.  相似文献   

8.
Serotonin 5-HT4 receptor isoforms are G protein-coupled receptors (GPCRs) with distinct pharmacological properties and may represent a valuable target for the treatment of many human disorders. Here, we have explored the process of dimerization of human 5-HT4 receptor (h5-HT4R) by means of co-immunoprecipitation and bioluminescence resonance energy transfer (BRET). Constitutive h5-HT4(d)R dimer was observed in living cells and membrane preparation of CHO and HEK293 cells. 5-HT4R ligands did not influence the constitutive energy transfer of the h5-HT4(d)R splice variant in intact cells and isolated plasma membranes. In addition, we found that h5-HT4(d)R and h5-HT4(g)R which structurally differ in the length of their C-terminal tails were able to form constitutive heterodimers independently of their activation state. Finally, we found that coexpression of h5-HT4R and beta2-adrenergic receptor (beta2AR) led to their heterodimerization. Given the large number of h5-HT4R isoforms which are coexpressed in a same tissue, our results points out the complexity by which this 5-HTR sub-type mediates its biological effects.  相似文献   

9.
10.
The serotonin 5-HT1D receptor: A progress review   总被引:4,自引:0,他引:4  
Most of the known neurotransmitters interact with more than one type of receptor. Some of them even dispose of receptor subtypes to exert their actions. Serotonin, far from being an exception to that, possesses at least 3 classes of receptors, which have all been reported to be heterogeneous, although convincing data only exist for the 5-HT1 class. This name has been proposed in 1979, two years before the introduction of A and B in the nomenclature to account for the observed heterogeneity of these cites. The 5-HT1C receptor subtype was first described in 1984 and the last member of the family, named 5-HT1D, was characterized in 1987. The pharmacological profiles, the signal transducing systems and the anatomical localizations, both at the regional and cellular levels, of all these subtypes have been investigated and possible functions have been proposed for each of them. Moreover, last and most definitive demonstration of the subtype individuality, the gene or complementary DNA coding for the 5-HT1A and 5-HT1C (and 5-HT2) receptors have been cloned and sequenced. Such data are still missing for 5-HT1D (and 5-HT1B) receptors, but will certainly be provided in the next few years. However and waiting for this decisive clue, the characterization of the 5-HT1D subtype leaves no doubt concerning its significance as a functional 5-HT receptor. This review will concentrate on the characteristics of this subtype of 5-HT receptor.Abbreviations 5-CT 5-carboxamidotryptamine - 5-MeOT 5-methoxy-tryptamine - 5-MeODMT N,N-dimethyl-5-methoxytryptamine - 8-OH-DPAT 8-hydroxy-2[di-n-propylamino]tetralin - CYP cyanopindolol - DHE dihydroergotamine - DOI 2,5-dimethoxy-4-iodophenylisopropylamine - DP-5-CT N,N-dipropyl 5-carboxamidotryptamine - ICPY 2-iodo-cyanopindolol - mCPP m-chloro-phenyl-piperazine - TFMPP m-trifluoro-methyl-phenyl-piperazine - EMAX Maximal effect - EC50 Half maximal effective concentration - KD Dissociation constant - KB Antagonist dissociation constant  相似文献   

11.
An investigation of the structure-affinity relationships for the binding of 4-(N,N-dimethylaminomethyl)-N(9)-arylsulfonyl-9H-1,2,3,4-tetrahydrocarbazoles (conformationally-constrained analogues of the benzenesulfonyltryptamine 5-HT(6) antagonist MS-245) at human 5-HT(6) receptors revealed that various arylsulfonyl substituents are tolerated and that the 4-(N,N-dimethylaminomethyl) group is not required for binding. In particular, N(9)-(4-aminobenzenesulfonyl)-9H-1,2,3,4-tetrahydrocarbazole (20, K(i)=29 nM) was found to bind with high affinity and represents the first member of a new structural class of agents with 5-HT(6) antagonist properties (pA(2)=7.0; cAMP hydrolysis assay).  相似文献   

12.
Homomeric complexes of 5-HT(3A) receptor subunits form a ligand-gated ion channel. This assembly does not fully reproduce the biophysical and pharmacological properties of native 5-HT(3) receptors which might contain the recently cloned 5-HT(3B) receptor subunit. In the present study, heteromeric assemblies containing human 5-HT(3A) and 5-HT(3B) subunits were expressed in HEK 293 cells to detail the functional diversity of 5-HT(3) receptors. We designed patch-clamp experiments with homomeric (5-HT(3A)) and heteromeric (5-HT(3AB)) receptors to emphasize the kinetics of channel activation and desensitization. Co-expression of the 5-HT(3B) receptor subunit reduced the sensitivity for 5-HT (5-HT(3A) receptor: EC(50) 3 micro M, Hill coefficient 1.8; 5-HT(3AB) receptor: EC(50) 25 micro M, Hill coefficient 0.9) and markedly altered receptor desensitization. Kinetic modeling suggested that homomeric receptors, but not heteromeric receptors, desensitize via an agonist-induced open-channel block. Furthermore, heteromeric 5-HT(3AB) receptor assemblies recovered much faster from desensitization than homomeric 5-HT(3A) receptor assemblies. Unexpectedly, the specific 5-HT(3) receptor agonist mCPBG induced an open-channel block at both homomeric and heteromeric receptors. Because receptor desensitization and resensitization massively affect amplitude, duration, and frequency of synaptic signaling, these findings are evidence in favor of a pivotal role of subunit composition of 5-HT(3) receptors in serotonergic transmission.  相似文献   

13.
In agreement with previous data in the literature, our results indicate that serotonin, a monoamine neurotransmitter, can also regulate cell proliferation, cell movements and cell differentiation. We have recently shown that serotonin is required for embryonic heart development. Genetic ablation of the 5-HT2B receptor leads to partial embryonic and postnatal lethality with abnormal heart development. Similar molecular mechanisms seem to be involved in adult cardiomyocytes since mutant mice surviving to adulthood display a dilated cardiomyopathy. Furthermore this receptor appears to be involved in survival of cardiomyocytes. The 5-HT2B receptor is also implicated in systemic hypertension. Furthermore, mice with pharmacological or genetic ablation of 5-HT2B receptor are totally resistant to hypoxia-induced pulmonary hypertension, indicating that this receptor is regulating the pathologic vascular proliferation leading to this disease. Underlying mechanisms are still to be discovered.  相似文献   

14.
15.
New aza(nor)adamantanes , , and are described which exhibit properties of both 5-HT4 agonism and 5-HT3 antagonism. In particular, compound [SC-52491], an azanoradamantane, exhibits an EC50 of 51 nM in a functional model of 5-HT4 agonism and potent antagonism, Ki = 1.2 nM, at the 5-HT3 receptor.  相似文献   

16.
Human bleomycin hydrolase (hBH) is a neutral cysteine protease genetically associated with increased risk for Alzheimer disease. We show here that ectopic expression of hBH in 293APPwt and CHOAPPsw cells altered the processing of amyloid precursor protein (APP) and increased significantly the release of its proteolytic fragment, beta amyloid (Abeta). We also found that hBH interacted and colocalized with APP as determined by subcellular fractionation, in vitro binding assay, and confocal immunolocalization. Metabolic labeling and pulse-chase experiments showed that ectopic hBH expression increased secretion of soluble APPalpha/beta products without changing the half-life of cellular APP. We also observed that this increased Abeta secretion was independent of hBH isoforms. Our findings suggest a regulatory role for hBH in APP processing pathways.  相似文献   

17.
The serotonin (5-hydroxytryptamine) 2A receptor (5-HT2A) is an important G protein-coupled receptor (GPCR) that mediates the effects of hallucinogens and is the target of a number of commonly prescribed medications including atypical antipsychotics, antidepressants, and anxiolytics. The 5-HT2A receptor possesses a canonical Type I PDZ-binding domain (X-Ser/Thr-X-Phi) at the carboxyl terminus and has been predicted, but never demonstrated, to interact with PDZ domain-containing proteins. We discovered that PSD-95, a prototypic PDZ domain-containing protein, directly associates with the 5-HT2A receptor and regulates 5-HT2A receptor-mediated signaling and trafficking in HEK-293 cells. Co-immunoprecipitation studies revealed that the native 5-HT2A receptor, but not a mutant lacking the PDZ-binding domain, interacted directly with PSD-95. The association with PSD-95 enhanced 5-HT2A receptor-mediated signal transduction, a novel action of PSD-95 on GPCRs. The augmentation of 5-HT2A receptor signaling by PSD-95 was not accompanied by alteration in the kinetics of 5-HT2A receptor desensitization but was associated with the inhibition of agonist-induced 5-HT2A receptor internalization. Additional studies demonstrated that 5-HT2A receptor and PSD-95 were co-localized in clusters on the cell surface of HEK-293 cells. Taken together, the present work elucidates novel roles for PSD-95 in regulating the functional activity and intracellular trafficking of 5-HT2A receptors and possibly other GPCRs.  相似文献   

18.
We describe a genomic clone encoding the human 5-HT1B receptor. This apparently intronless gene encodes a 390 amino acid polypeptide homologous to the rat 5-HT1B serotonin receptor, with which it shares 93% amino acid sequence identity. Remarkably, [3H]5-hydroxytryptamine binding studies with transfected HeLa cells show that the human 5-HT1B receptor has a pharmacological profile that is markedly different from that of the corresponding rat receptor. Instead, human 5-HT1B drug specificity is highly similar to that of the human 5-HT1D receptor, with which it shares 59% amino acid sequence identity. The human 5-HT1B receptor, like the 5-HT1D receptor, can couple to Gi proteins. The presence of the threonine355 in the human receptor rather than an asparagine, as found in the corresponding rat gene product, may explain much of the marked pharmacological difference between the human and rat 5-HT1B receptors.  相似文献   

19.
G protein-coupled receptors (GPCRs) signal through a limited number of G-protein pathways and play crucial roles in many biological processes. Studies of their in vivo functions have been hampered by the molecular and functional diversity of GPCRs and the paucity of ligands with specific signaling effects. To better compare the effects of activating different G-protein signaling pathways through ligand-induced or constitutive signaling, we developed a new series of RASSLs (receptors activated solely by synthetic ligands) that activate different G-protein signaling pathways. These RASSLs are based on the human 5-HT(4b) receptor, a GPCR with high constitutive G(s) signaling and strong ligand-induced G-protein activation of the G(s) and G(s/q) pathways. The first receptor in this series, 5-HT(4)-D(100)A or Rs1 (RASSL serotonin 1), is not activated by its endogenous agonist, serotonin, but is selectively activated by the small synthetic molecules GR113808, GR125487, and RO110-0235. All agonists potently induced G(s) signaling, but only a few (e.g., zacopride) also induced signaling via the G(q) pathway. Zacopride-induced G(q) signaling was enhanced by replacing the C-terminus of Rs1 with the C-terminus of the human 5-HT(2C) receptor. Additional point mutations (D(66)A and D(66)N) blocked constitutive G(s) signaling and lowered ligand-induced G(q) signaling. Replacing the third intracellular loop of Rs1 with that of human 5-HT(1A) conferred ligand-mediated G(i) signaling. This G(i)-coupled RASSL, Rs1.3, exhibited no measurable signaling to the G(s) or G(q) pathway. These findings show that the signaling repertoire of Rs1 can be expanded and controlled by receptor engineering and drug selection.  相似文献   

20.
A series of novel 1,2,3-benzotriazin-4-one derivatives was prepared and evaluated as ligands for 5-HT receptors. Radioligand binding assays proved that the majority of the novel compounds behaved as good to excellent ligands at the 5-HT1A receptor, some of which were selective with respect 5-HT2A and 5-HT2C receptors. Six analogues (1a, 2a, 2b, 2c, 2e and 2i) were selected and further evaluated for their binding affinities on D1, D2 dopaminergic and alpha1-, alpha2-adrenergic receptors. A o-OCH3 derivative (2e) bound at 5-HT1A sites with subnanomolar affinity (IC50 = 0.059 nM) and shows high selectivity over all considered receptors and may offer a new lead for the development of therapeutically efficacious agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号