首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of lilac compounds in ‘Hortgem Tahi’ kiwifruit (Actinidia arguta) flowers was investigated by treating inflorescences with d5-linalool. The incorporation of the deuterium label into 8-hydroxylinalool, 8-oxolinalool, the lilac aldehydes, alcohols, and alcohol epoxides was followed by GC-MS and enantioselective GC-MS. Both (R)- and (S)-linalool were produced naturally by the flowers, but 8-hydroxylinalool, 8-oxolinalool, and the lilac aldehydes and alcohols occurred predominantly as the (S) and 5′(S)-diastereoisomers, respectively. The enantioselective step in the biosynthesis of the lilac aldehydes and alcohols was concluded to be the oxidation of linalool to (S)-8-hydroxylinalool. In contrast, the lilac alcohol epoxides had a 5′(R):(S) ratio, the same as for linalool, which suggests that either these compounds are not synthesised from the 5′(S)-configured lilac aldehydes and alcohols, or that if indeed they are, then it is by an enantioselective step that favours utilisation of the 5′(R)-configured compounds.  相似文献   

2.
Phospholipid peroxidation generates a variety of aldehydes, which includes free saturated and unsaturated aldehydes, and aldehydes that remain esterified to the phosphoglyceride backbone — the so-called ‘core’ aldehydes. However, little is known in regarding the vascular metabolism of these aldehydes. To identify biochemical pathways that metabolize free aldehydes, we examined the metabolism of 4-hydroxy-trans-2-nonenal in human aortic endothelial cells. Incubation of these cells with [3H]-HNE led to the generation of four main metabolites, i.e. glutathionyl HNE (GS-HNE), glutathionyl dihydroxynonene (GS-DHN), DHN and 4-hydroxynonanoic acid (HNA), which accounted for 5, 50, 6, and 23% of the total HNE metabolized. The conversion of GS-HNE to GS-DHN was inhibited by tolrestat, indicating that it is catalyzed by aldose reductase (AR). The AR was also found to be an efficient catalyst for the reduction of the core aldehyde — 1-palmitoyl-2- (5-oxovaleroyl)-sn-glycero-3-phosphorylcholine, which is generated in minimally modified low-density lipoprotein, and activates the endothelium to bind monocytes. As determined by electrospray mass spectrometry, reduction of POVPC (m/z=594) by AR led to the formation of 1-palmitoyl-2- (5)-hydrovaleryl-sn-glycero-3-phosphorylcholine (PHVPC; m/z=596). These observations suggest that due to its ability to catalyze the reduction of lipid-derived aldehydes AR may be involved in preventing inflammation and diminishing oxidative stress during the early phases of atherogenesis.  相似文献   

3.
The toxicities of three plant volatiles, (2E)-hexenal, (2E, 6Z)-nonadienal and (2E)-nonenal, intermediate products of the oxylipin biosynthesis pathway, were tested on three mites of importance for medical purposes and as pests. The aldehydes were diluted in hexane separately and incorporated into diets in ranges of 4–143 mg g−1. The final density of mites in control and aldehyde-enriched diets was compared after 21 days. The aldehydes were toxic to the mites, whose final density showed an inverse correlation with aldehyde concentration. In addition to the effects of aldehyde concentration, the final density of mites was also influenced by the different aldehydes tested and the interaction among aldehyde concentration and chemical structure. In a functional combination of aldehydes and species, the doses calculated for growth inhibition and eradication of mites ranged from 4 to 35 mg g−1 and from 36 to 314 mg g−1, respectively. Due to the protective role displayed by natural six-carbon and nine-carbon aldehydes, these compounds are potential candidates for controlling stored-product mites in stored food and feed products.  相似文献   

4.
Long-chain fatty aldehydes are present in low concentrations in mammalian cells and serve as intermediates in the interconversion between fatty acids and fatty alcohols. The long-chain fatty aldehydes are generated by enzymatic hydrolysis of 1-alkyl-, and 1-alkenyl-glycerophospholipids by alkylglycerol monooxygenase, plasmalogenase or lysoplasmalogenase while hydrolysis of sphingosine-1-phosphate (S1P) by S1P lyase generates trans ∆2-hexadecenal (∆2-HDE). Additionally, 2-chloro-, and 2-bromo- fatty aldehydes are produced from plasmalogens or lysoplasmalogens by hypochlorous, and hypobromous acid generated by activated neutrophils and eosinophils, respectively while 2-iodofatty aldehydes are produced by excess iodine in thyroid glands. The 2-halofatty aldehydes and ∆2-HDE activated JNK signaling, BAX, cytoskeletal reorganization and apoptosis in mammalian cells. Further, 2-chloro- and 2-bromo-fatty aldehydes formed GSH and protein adducts while ∆2-HDE formed adducts with GSH, deoxyguanosine in DNA and proteins such as HDAC1 in vitro. ∆2-HDE also modulated HDAC activity and stimulated H3 and H4 histone acetylation in vitro with lung epithelial cell nuclear preparations. The α-halo fatty aldehydes elicited endothelial dysfunction, cellular toxicity and tissue damage. Taken together, these investigations suggest a new role for long-chain fatty aldehydes as signaling lipids, ability to form adducts with GSH, proteins such as HDACs and regulate cellular functions.  相似文献   

5.
6.
Interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) by the UDP-Glc 4´-epimerase intimately connects the biosynthesis of these two nucleotide sugars. Their de novo biosynthesis involves transformation of glucose-6-phosphate into glucose-1-phosphate by the phosphoglucomutase and subsequent activation into UDP-Glc by the specific UDP-Glc pyrophosphorylase (UGP). Besides UGP, Leishmania parasites express an uncommon UDP-sugar pyrophosphorylase (USP) able to activate both galactose-1-phosphate and glucose-1-phosphate in vitro. Targeted gene deletion of UGP alone was previously shown to principally affect expression of lipophosphoglycan, resulting in a reduced virulence. Since our attempts to delete both UGP and USP failed, deletion of UGP was combined with conditional destabilisation of USP to control the biosynthesis of UDP-Glc and UDP-Gal. Stabilisation of the enzyme produced by a single USP allele was sufficient to maintain the steady-state pools of these two nucleotide sugars and preserve almost normal glycoinositolphospholipids galactosylation, but at the apparent expense of lipophosphoglycan biosynthesis. However, under destabilising conditions, the absence of both UGP and USP resulted in depletion of UDP-Glc and UDP-Gal and led to growth cessation and cell death, suggesting that either or both of these metabolites is/are essential.  相似文献   

7.
The paper provides further clues as to the physiological function and biological significance of the ‘accessory gland’ in the metathoracic scent apparatus of the lygaeid Oncopeltus fasciatus. From various lines of evidence (gas chromatographic, cytochemical) it is concluded as probable that the accessory gland secretes small quantities of a mucopolysaccharide secretory product together with water. The difficulty of reconciling these data with other data indicating that the accessory gland is involved in the biosynthesis of the scent aldehydes is discussed. It is suggested that the water secreted into the median scent reservoir by the accessory gland provides O. fasciatus with a means of volumetric compensation for a diminished output of scent repellent.  相似文献   

8.
9.
10.
《Genomics》2021,113(4):2304-2316
BackgroundJilin ginseng, Panax ginseng, is a valuable medicinal herb whose ginsenosides are its major bioactive components. The ginseng oxidosqualene cyclase (PgOSC) gene family is known to play important roles in ginsenoside biosynthesis, but few members of the gene family have been functionally studied.MethodsThe PgOSC gene family has been studied by an integrated analysis of gene expression-ginsenoside content correlation, gene mutation-ginsenoside content association and gene co-expression network, followed by functional analysis through gene regulation.ResultsWe found that five of the genes in the PgOSC gene family, including two published ginsenoside biosynthesis genes and three new genes, were involved in ginsenoside biosynthesis. Not only were the expressions of these genes significantly correlated with ginsenoside contents, but also their nucleotide mutations significantly influenced ginsenoside contents. These results were further verified by regulation analysis of the genes by methyl jasmonate (MeJA) in ginseng hairy roots. Four of these five PgOSC genes were mapped to the ginsenoside biosynthesis pathway. These PgOSC genes expressed differently across tissues, but relatively consistent across developmental stages. These PgOSC genes formed a single co-expression network with those published ginsenoside biosynthesis genes, further confirming their roles in ginsenoside biosynthesis. When the network varied, ginsenoside biosynthesis was significantly influenced, thus revealing the molecular mechanism of ginsenoside biosynthesis.ConclusionAt least five of the PgOSC genes, including the three newly identified and two published PgOSC genes, are involved in ginsenoside biosynthesis. These results provide gene resources and knowledge essential for enhanced research and applications of ginsenoside biosynthesis in ginseng.  相似文献   

11.
The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon–carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.  相似文献   

12.
13.
Three plant growth regulators, paclobutrazol, ancymidol, and decylimidazole, which are putative inhibitors of gibberellin (GA) biosynthesis, were studied to determine their effect on abscisic acid (ABA) biosynthesis in the fungus Cercospora rosicola. All three compounds inhibited ABA biosynthesis, and paclobutrazol was the most effective, inhibiting ABA 33% at 0.1 micromolar concentrations. In studies using (E,E,)-[1-14C] farnesyl pyrophosphate, it was shown that ancymidol blocked biosynthesis prior to farnesyl pyrophosphate (FPP), whereas paclobutrazol and decylimidazole acted after FPP. The three inhibitors did not prevent 4′-oxidation of (2Z,4E)-α-ionylideneacetic acid. C. rosiciola metabolized ancymidol by demethylation to α-cyclopropyl-α-(p-hydroxyphenyl)-5-pyrimidine methyl alcohol. Paclobutrazol was not metabolized by the fungus. Information that these plant growth regulators inhibit ABA as well as GA biosynthesis should prove useful in determining the full range of action of these compounds.  相似文献   

14.
15.
SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F2 populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.  相似文献   

16.
17.
Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic-3,2′,3′,4′,5′,6′-d5 acid gave scopoletin-d2. However, feeding with E-cinnamic-3,2′,3′,4′,5′,6′-d6 and E-cinnamic-2,3,2′,3′,4′,5′,6′-d7 acids, both gave scopoletin-d3, the latter not affording the expected scopoletin-d4. We therefore synthesised and fed with E-cinnamic-2-d1 when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by σ-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic-2,3,2′,3′,4′,5′,6′-d7 acid gave scopoletin-d3 with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.  相似文献   

18.
Mycelia of Gibberella zeae (anamorph, Fusarium graminearum), an important pathogen of cereal crops, are yellow to tan with white to carmine red margins. We isolated genes encoding the following two proteins that are required for aurofusarin biosynthesis from G. zeae: a type I polyketide synthase (PKS) and a putative laccase. Screening of insertional mutants of G. zeae, which were generated by using a restriction enzyme-mediated integration procedure, resulted in the isolation of mutant S4B3076, which is a pigment mutant. In a sexual cross of the mutant with a strain with normal pigmentation, the pigment mutation was linked to the inserted vector. The vector insertion site in S4B3076 was a HindIII site 38 bp upstream from an open reading frame (ORF) on contig 1.116 in the F. graminearum genome database. The ORF, designated Gip1 (for Gibberella zeae pigment mutation 1), encodes a putative laccase. A 30-kb region surrounding the insertion site and Gip1 contains 10 additional ORFs, including a putative ORF identified as PKS12 whose product exhibits about 40% amino acid identity to the products of type I fungal PKS genes, which are involved in pigment biosynthesis. Targeted gene deletion and complementation analyses confirmed that both Gip1 and PKS12 are required for aurofusarin production in G. zeae. This information is the first information concerning the biosynthesis of these pigments by G. zeae and could help in studies of their toxicity in domesticated animals.  相似文献   

19.
Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid–derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.  相似文献   

20.
The allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches of the oxylipin pathway, which underlie the production of jasmonates and aldehydes, respectively, function in plant responses to a range of stresses. Regulatory crosstalk has been proposed to exist between these two signaling branches; however, there is no direct evidence of this. Here, we identified and characterized a jasmonic acid (JA) overproduction mutant, cea62, by screening a rice T-DNA insertion mutant library for lineages that constitutively express the AOS gene. Map-based cloning was used to identify the underlying gene as hydroperoxide lyase OsHPL3. HPL3 expression and the enzyme activity of its product, (E)-2-hexenal, were depleted in the cea62 mutant, which resulted in the dramatic overproduction of JA, the activation of JA signaling, and the emergence of the lesion mimic phenotype. A time-course analysis of lesion formation and of the induction of defense responsive genes in the cea62 mutant revealed that the activation of JA biosynthesis and signaling in cea62 was regulated in a developmental manner, as was OsHPL3 activity in the wild-type plant. Microarray analysis showed that the JA-governed defense response was greatly activated in cea62 and this plant exhibited enhanced resistance to the T1 strain of the bacterial blight pathogen Xanthomonasoryzaepvoryzae (Xoo). The wounding response was attenuated in cea62 plants during the early stages of development, but partially recovered when JA levels were elevated during the later stages. In contrast, the wounding response was not altered during the different developmental stages of wild-type plants. These findings suggest that these two branches of the oxylipin pathway exhibit crosstalk with regards to biosynthesis and signaling and cooperate with each other to function in diverse stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号