首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
It is important for breeders and producers to be aware of competition effects for variety trials. We aimed at developing an index of competition to reduce statistical variability in field trials and improve comparisons between genotypes of Miscanthus. Twenty-one clones belonging to four species of Miscanthus (M. x giganteus, M. floridulus, M. sinensis, and M. sacchariflorus) planted at the same density were compared at two harvest dates during the second and third crop years. Aboveground volume was shown to be a good predictor of the aboveground biomass of the clones, and was analysed for the competition effect. The best competition index was the ground area occupied by the eight neighbour plants, among the four indices defined as covariates in the statistical models. It reduced the root mean square error of the aboveground volume by as much as 17?%, explaining up to 36?% of the residual error of the model. Our results then concerned the contribution of intragenotypic competition of Miscanthus to the variability between plants of a same clone during field trials, the relationship between competition ability and plant traits, and the comparison of genotypes regarding this competition. All clones showed negative competition sensitivities depending on harvest date, crop year, and clone. The competition effects lead to reduction in mean aboveground volume by up to 17?%. Competition sensitivities were strongly correlated with aboveground development (height and yield) in both crop years, whatever the harvest dates. In Miscanthus field trials, using a competition index may help to reduce statistical variability and improve comparisons between genotypes.  相似文献   

2.
A simple, efficient protocol for direct in vitro shoot organogenesis and regeneration was established for three species of Miscanthus including two clones of Miscanthus x giganteus, one clone of M. sinensis and one clone of M. sacchariflorus. Shoots were induced from the axillary nodes of both M. x giganteus and M. sacchariflorus and from apical meristems of both M. sinensis and M. sacchariflorus. A tillering method was used to accelerate shoot proliferation. Shoots were rooted in a wet perlite substrate in pots in the greenhouse. Subsequently, rooted plants were transferred to the field. The genetic uniformity of regenerated plants was evaluated using amplified fragment length polymorphism analysis and compared to that of rhizome-propagated plants. A total of 33,443 fragments were generated, representing 869 markers. There were 21 fragments (0.06 % of the fragments) or 19 markers (2.19 % of the markers) that were polymorphic, and almost all of these were singletons. The three species showed similar polymorphisms. Genetic variability was also found in the rhizome-propagated plants, sometimes at a higher rate than in the in vitro culture, indicating that the genetic uniformity was not altered by the protocol. This protocol may help breeders produce new clones of Miscanthus in the future.  相似文献   

3.
Plants from the genus Miscanthus are potential renewable sources of lignocellulosic biomass for energy production. A potential strategy for Miscanthus crop improvement involves interspecific manipulation of ploidy levels to generate superior germplasm and to circumvent reproductive barriers for the introduction of new genetic variation into core germplasm. Synthetic autotetraploid lines of Miscanthus sacchariflorus and Miscanthus sinensis, and autoallohexaploid Miscanthus x giganteus were produced in tissue culture from oryzalin treatments to seed‐ and immature inflorescence‐derived callus lines. This is the first report of the genome doubling of diploid M. sacchariflorus. Genome doubling of diploid M. sinensis, M. sacchariflorus, and triploid M. x giganteus to generate tetraploid and hexaploid lines was confirmed by stomata size, nuclear DNA content, and chromosome counts. A putative pentaploid line was also identified among the M. x giganteus synthetic polyploid lines by nuclear DNA content and chromosome counts. Comparisons of phenotypic performance of synthetic polyploid lines with their diploid and triploid progenitors in the greenhouse found species‐specific differences in plant tiller number, height, and flowering time among the doubled lines. Stem diameter tended to increase after polyploidization but there were no significant improvements in biomass traits. Under field conditions, M. x giganteus synthetic hexaploid lines showed greater phenotypic variation, in terms of plant height, stem diameter, and tiller number, than their progenitor lines. Production of synthetic autopolyploid lines displaying significant phenotypic variation suggests that ploidy manipulation can introduce useful genetic diversity in the limited Miscanthus germplasm currently available in the United States. The role of polyploidization in the evolution and breeding of the genus Miscanthus is discussed.  相似文献   

4.
Environmental and economic factors have stimulated research in the area of bioenergy crops. While many plants have been identified as potential energy crops, one species in particular, Miscanthus x giganteus, appears to have the most promise. As researchers attempt to exploit and improve M. x giganteus, genome information is critical. In this study, the genome size of M. x giganteus and its two progenitor species were examined by flow cytometry and stomatal cell analyses. M. x giganteus was found to have genome size of 7.0 pg while Miscanthus sinensis and Miscanthus sacchariflorus were observed to have genome sizes of 5.5 and 4.5 pg respectively with stomatal size correlating with genome size. Upon computing the two tetraploid × diploid hybrids theoretical genome sizes, the data presented in this paper supports the hypothesis of the union of a 2x M. sacchariflorus and a 1x M. sinensis gamete for the formation of the allotriploid, M. x giganteus. Such genomic information provides basic knowledge that is important in M. x giganteus plant improvement.  相似文献   

5.
The perennial grass, Miscanthus×giganteus is a sterile triploid, which due to its growth rate and biomass accumulation has significant economic potential as a new bioenergy crop. The sterility associated with the triploid genome of this accession requires labor‐intensive vegetative, instead of seed propagation for potential commercial production. Chromosome doubling was used to produce hexaploid plants in an effort to restore fertility to M×giganteus. Tissue culture derived calli from immature inflorescences were treated with the antimitotic agents, colchicine and oryzalin in liquid and solid media. Calli survival rate decreased with increasing concentrations and durations of colchicine or oryzalin treatments and ranged from 0% to 100%. Nuclear DNA content, as determined by flow cytometry, indicated that the frequency of chromosome‐doubled calli varied between compounds and concentrations with the greatest proportion of callus doubling observed using 2‐day treatments of 15 μm oryzalin (78%) or 939 μm colchicine (67%). Liquid media treatments were more effective than solid gels for chromosome doubling. Although oryzalin was effective at chromosome doubling, it inhibited callus growth and plant regeneration frequency. Seven hexaploid plants with doubled DNA content were generated, which displayed increased stomata size (30.0±0.2 μm) compared with regenerated triploid M. ×giganteus plants (24.3±1.0 μm). Following clonal replication these plants will be evaluated for growth rate, biomass accumulation, and pollen viability. Successful chromosome doubling and plant regeneration of M.×giganteus suggests that ploidy manipulation of this plant and its parental species (Miscanthus sinensis and Miscanthus sacchariflorus) could be a means to access genetic variability for the improvement of Miscanthus as a biofuel/bioenergy crop.  相似文献   

6.
Senescence impacts the harvestable biomass yield and quality in Miscanthus. Very early autumn senescence shortens the canopy duration reducing yield potential. When senescence is too late or slow, the crop does not ripen sufficiently before harvest, resulting in high moisture and nutrient offtakes that reduce biomass quality. In this study, variation in senescence was monitored over 3?years in a trial of 244 Miscanthus genotypes planted in four replicate blocks. The experiment comprised 199 genotypes of Miscanthus sinensis, 36 genotypes of Miscanthus sacchariflorus, and 9 genotypes of Miscanthus?×?giganteus. On average, M. sinensis genotypes remained greener for longer than M. sacchariflorus genotypes. There was a strong correlation between senescence and moisture content at harvest in 2007 and 2008 (R 2?=?0.59, R 2?=?0.57, respectively; n?=?244). The senescence rate of M.?×?giganteus, an interspecific hybrid between M. sinensis and M. sacchariflorus, was found to lie between the two parental species groups. Environmental signals likely to be involved in the timing and rate of senescence, such as variation in photoperiod and thermal time that occurred through the growing season were investigated. Interactions between individual environmental signals and senescence were difficult to separate. The majority of plants senesced consistently between replicate blocks, and rank order was mostly consistent across all years suggesting strong genotypic control of senescence. This study provides valuable information for the future optimisation of Miscanthus, and potentially other energy grasses, where new varieties are needed to maximise net energy yields and crop quality for different end uses in different global regions.  相似文献   

7.
Miscanthus species, which are C4perennial grasses, have a highbiomass potential but yields at many sites in Europe can belimited by insufficient water supply and plant survival is endangeredunder extreme summer drought. A pot experiment was conductedto measure the influence of reduced water supply on the wateruse efficiency (WUE) and biomass partitioning of three Miscanthusgenotypes (M. x giganteus, M. sacchariflorus, and a M. sinensishybrid) in a controlled environment. The experiment consistedof three phases (phase 1 = 0–20 d; phase 2 = 21–39d; phase 3 = 40–54 d) punctuated by destructive harvests.In phase 1, soil moisture was non-limiting. In the second andthird phases, lowered soil moisture contents induced water deficits.Air vapour pressure deficit (VPD) was 0.49 ± 0.05 kPa.Water deficits caused leaf senescence in M. x giganteus andM. sacchariflorus, but not in the M. sinensis hybrid. Greenleaf conductances were lowest in M. sinensis under water deficit,indicating stomatal regulation. Water use efficiency for wholeplants of each genotype ranged from 11.5 to 14.2 g dry matter(DM) kg-1H2O but did not differ significantly between genotypesor water treatments under the conditions of this experiment.However, differences in dry matter partitioning to the shoot(the harvestable component) resulted in genotypic differencesin WUE, calculated on a harvestable dry matter basis, whichranged from 4.1 g DM kg-1H2O for M. sacchariflorus to 2.2 gDM kg-1H2O for M. x giganteus. Copyright 2000 Annals of BotanyCompany Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus x giganteus, water use efficiency, biomass, C4plants, drought  相似文献   

8.
Miscanthus is a C4 perennial grass originating from East Asia, the yields of which progressively increase in the first years of growth. Several species for bioenergy have been studied since the mid‐1980s in Europe, in particular (Miscanthus × giganteus [M. × giganteus]), due to its high yields. M. × giganteus is mainly cultivated in France and established from rhizomes. Our study aimed to assess, in field conditions, alternative establishment methods combined with an alternative species, Miscanthus sinensis (M. sinensis). We set up a multi‐environment experimental network. On each trial, we tested two treatments with M. × giganteus, established from rhizomes (G_r‐sd) and from plantlets obtained from rhizomes (G_p‐sd), and two treatments with M. sinensis seedlings transplanted in single (S_p‐sd) and double density (S_p‐dd). ANOVA was performed to compare establishment and regrowth rates across treatments, as well as yields across treatments and site‐years. A logistic model was used to describe yield trends and to compare the maximum yield reached and the rate of yield increase of both species. Results showed that miscanthus establishment from plantlets resulted in higher establishment (between 87% and 92%) and regrowth (between 91% and 94%) rates compared to establishment from rhizomes. Treatments with M. × giganteus obtained higher average yields across site‐years than those with M. sinensis, but more variable yields across site‐years. We showed a strong species effect on yields, yield components (shoot weight, shoot density and shoot number per plant) and light interception (through leaf area index). Lastly, to use M. sinensis established from transplanted plantlets as an alternative to M. × giganteus, research would be required on the breeding of M. sinensis sterile seeds to avoid risks of invasiveness.  相似文献   

9.
A long growing season, mediated by the ability to grow at low temperatures early in the season, can result in higher yields in biomass of crop Miscanthus. In this paper, the chilling tolerance of two highly productive Miscanthus genotypes, the widely planted Miscanthus × giganteus and the Miscanthus sinensis genotype ‘Goliath’, was studied. Measurements in the field as well as under controlled conditions were combined with the main purpose to create basic comparison tools in order to investigate chilling tolerance in Miscanthus in relation to its field performance. Under field conditions, M. × giganteus was higher yielding and had a faster growth rate early in the growing season. Correspondingly, M. × giganteus displayed a less drastic reduction of the leaf elongation rate and of net photosynthesis under continuous chilling stress conditions in the growth chamber. This was accompanied by higher photochemical quenching and lower nonphotochemical quenching in M. × giganteus than that in M. sinensis ‘Goliath’ when exposed to chilling temperatures. No evidence of impaired stomatal conductance or increased use of alternative electron sinks was observed under chilling stress. Soluble sugar content markedly increased in both genotypes when grown at 12°C compared to 20°C. The concentration of raffinose showed the largest relative increase at 12°C, possibly serving as a protection against chilling stress. Overall, both genotypes showed high chilling tolerance for C4 plants, but M. × giganteus performed better than M. sinensis ‘Goliath’. This was not due to its capacity to resume growth earlier in the season but rather due to a higher growth rate and higher photosynthetic efficiency at low temperatures.  相似文献   

10.
Due to its versatility and storability, biomass is an important resource for renewable materials and energy. Miscanthus hybrids combine high yield potential, low input demand, tolerance of certain marginal land types and several ecosystem benefits. To date, miscanthus breeding has focussed on increasing yield potential by maximising radiation interception through: (1) selection for early emergence, (2) increasing the growth rate to reach canopy closure as fast as possible, and (3) delayed flowering and senescence. The objective of this study is to compare early season re-growth in miscanthus hybrids cultivated across Europe. Determination of differences in early canopy development on end-of-year yield traits is required to provide information for breeding decisions to improve future crop performance. For this purpose, a trial was planted with four miscanthus hybrids (two novel seed-based hybrids M. sinensis × sinensis [M sin × sin] and M. sacchariflorus × sinensis [M sac × sin], a novel rhizome-based M sac × sin and a standard Miscanthus × giganteus [M × g] clone) in the UK, Germany, Croatia and Italy, and was monitored in the third and fourth growing season. We determined differences between the hybrids in base temperature, frost sensitivity and emergence strategy. M × g and M sac × sin mainly emerged from belowground plant organs, producing fewer but thicker shoots at the beginning of the growing season but these shoots were susceptible to air frosts (determined by recording 0°C 2 m above ground surface). By contrast, M sin × sin emerged 10 days earlier, avoiding damage by late spring frosts and producing a high number of thinner shoots from aboveground shoots. Therefore, we recommend cultivating M sac × sin at locations with low risk and M sin × sin at locations with higher risk of late spring frosts. Selecting miscanthus hybrids that produce shoots throughout the vegetation period is an effective strategy to limit the risk of late frost damage and avoid reduction in yield from a shortened growing season.  相似文献   

11.
Perennial C4 grasses, especially Miscanthus sinensis, are widely distributed in the degraded lands in South China. We transplanted native and exotic tree seedlings under the canopy of M. sinensis to assess the interaction (competition or facilitation) between dominant grass M. sinensis and tree seedlings. The results of growth, chlorophyll fluorescence, and ultrastructure showed that negative effects may be stronger in perennial dominant grass M. sinensis. Although M. sinensis buffered the air temperature, improved soil structure, and increased soil phosphorus content, these beneficial effects were outweighed by the detrimental effect, especially overshading. To ensure the establishment of target native species in M. sinensis communities in degraded lands of South China, restoration strategies should include removing aboveground vegetation, planting target species seedlings in openings to reduce the effects of canopy shading, and/or selecting competition-tolerant target species. Also, seedlings of exotic species used in restoration engineering cannot be directly planted under the canopy of M. sinensis.  相似文献   

12.
The perennial grass genus Miscanthus has great promise as biomass feedstock, but there are concerns about potential invasion outside production fields. While the sterile hybrid Miscanthus × giganteus is currently one of the leading feedstock options due to its low invasive potential, fertile varieties are being developed to reduce establishment costs, and their invasive risks need to be further assessed. We performed seed addition experiments in Ohio and Iowa, USA to examine the establishment, flowering, persistence, and shoot biomass per plot of a fertile M. × giganteus biotype (‘PowerCane’) and two Miscanthus sinensis biotypes, one feral, and one ornamental. Seeds were added to small, replicated plots in each of the 2 years under two seeding densities and two competition treatments, and plots were monitored for 2–3 years. The ‘PowerCane’ biotype established better, survived better, and produced greater amounts of biomass per plot than both M. sinensis biotypes. All three biotypes flowered by the second or third year after establishment, with inflorescences more numerous in ‘PowerCane’ and the Ornamental M. sinensis biotypes. Effects of seeding density and competition on these patterns were minor in most cases. Our research suggests that ‘PowerCane’ exhibits many traits shared by both biomass crops and invasive species: multi-year persistence, high biomass potential, and fertility. We suggest that the benefits of a seeded M. × giganteus should be carefully weighed against its increased invasive risk prior to deployment across the landscape.  相似文献   

13.
Miscanthus sinensis is a moderately invasive ornamental grass species being considered as a bioenergy species in the USA and elsewhere. In this study, we show the range of environmental conditions tolerated by this species in wild populations in the USA and in Japan. Six naturalized populations in the USA and five native populations in Japan were sampled in summer 2009. In each population, environmental factors (canopy cover and soil fertility) were measured, along with measurements of size and morphology for 30 plants. Relationships between M. sinensis size and environmental variables in the two countries were determined using linear mixed effects models. Results indicated that M. sinensis can tolerate extremely wide variation in soil and climate conditions in the populations we sampled across both ranges, suggesting that it could be successfully grown across a wide distribution in the USA, both intentionally as a bioenergy crop and unintentionally as an escaped invader. Plant size generally responded to different environmental conditions in both ranges, with USA plants being negatively influenced by canopy cover and Japanese plants being positively influenced by soil fertility measures. We recommend caution in growing M. sinensis for bioenergy or ornamental purposes to minimize escape outside of its native range.  相似文献   

14.
Chilling temperatures (0–15°C) inhibit photosynthesis in most C4 grasses, yet photosynthesis is chilling tolerant in the ‘Illinois’ clone of the C4 grass Miscanthus x giganteus, a candidate cellulosic bioenergy crop. M. x giganteus is a hybrid between Miscanthus sacchariflorus and Miscanthus sinensis; therefore chilling‐tolerant parent lines might produce hybrids superior to the current clone. Recently a collection of M. sacchariflorus from Siberia, the apparent low temperature limit of natural distribution, became available, which may be a source for chilling tolerance. The collection was screened for chilling tolerance of photosynthesis by measuring dark‐adapted maximum quantum yield of PSII photochemistry (Fv/Fm) on plants in the field in cool weather. Superior accessions were selected for further phenotyping: plants were grown at 25°C, transferred to 10°C (chilling) for 15 days, and returned to 25°C for 7 days (recovery). Two experiments assessed: (a) light‐saturated net photosynthetic rate (Asat) and operating quantum yield of PSII photochemistry (ΦPSII), (b) response of net leaf CO2 uptake (A) to intercellular [CO2] (ci). Three accessions showed superior chilling tolerance: RU2012‐069 and RU2012‐114 achieved Asat up to double that of M. x giganteus prior to and during chilling, due to increased ci ‐ saturated photosynthesis (Vmax). RU2012‐069 and RU2012‐114 also maintained greater levels of ΦPSII during chilling, indicating reduced photodamage. Additionally, accession RU2012‐112 maintained a stable Asat throughout the 15‐day chilling period, while Asat continuously declined in other accessions; this suggests RU2012‐112 could outperform others in lengthy chilling periods. Plants were returned to 25°C after the chilling period; M. x giganteus showed the weakest recovery after 1 day, but a strong recovery after 1 week. This study has therefore identified important genetic resources for the synthesis of improved lines of M. x giganteus, which could facilitate the displacement of fossil fuels by cellulosic bioenergy.  相似文献   

15.
Due to the limited number of molecular studies focused on European gene pool investigation, it is necessary to perform plant material recognition. Eighteen accessions of three Miscanthus species, namely, M. × giganteus, M. sinensis, M. sacchariflorus were evaluated with the use of molecular marker systems such as: inter simple sequence repeats (ISSRs), random amplified polymorphic DNA (RAPD), and by estimation of ploidy level based on flow cytometry. As a result, only one ISSR primer (ISSR1) and three RAPD primers (RAPD1, RAPD2, RAPD4) were required to identify all genotypes. Moreover, the use of the above mentioned molecular markers enable the proper species recognition of the interspecific hybrid M. × giganteus “Floridulus,” which has been previously mislabeled as M. floridulus. The highest genetic similarity coefficient (0.94) was observed between M. × giganteus clones, which indicates that the genetic diversity within this species was very low. Whereas M. sinensis genotypes represented a relatively wide diversity with similarity coefficient of 0.58. Cluster analysis using UPGMA grouped the 18 accessions in three clusters according to species affiliation including relabeled M. × giganteus “Floridulus,” which proved to be closely related to M.  × giganteus. Similar groupings were evident in the PCoA analysis.  相似文献   

16.
To breed improved biomass cultivars of Miscanthus ×giganteus, it will be necessary to select the highest‐yielding and best‐adapted genotypes of its parental species, Miscanthus sinensis and Miscanthus sacchariflorus. We phenotyped a diverse clonally propagated panel of 569 M. sinensis and nine natural diploid M. ×giganteus at one subtropical (Zhuji, China) and five temperate locations (Sapporo, Japan; Leamington, Ontario, Canada; Fort Collins, CO; Urbana, IL; and Chuncheon, Korea) for dry biomass yield and 14 yield‐component traits, in trials grown for 3 years. Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in Zhuji, China, approaching the highest observed for any land plant. Additionally, six M. sinensis in Sapporo, Japan and one in Leamington, Canada also yielded more than the triploid M. ×giganteus ‘1993‐1780’ control, with values exceeding 20 Mg/ha. Diploid M. ×giganteus was the best‐yielding group at the northern sites. Genotype‐by‐environment interactions were modest among the five northern trial sites but large between Zhuji, and the northern sites. M. sinensis accessions typically yielded best at trial sites with latitudes similar to collection sites, although broad adaptation was observed for accessions from southern Japan. Genotypic heritabilities for third year yields ranged from 0.71 to 0.88 within locations. Compressed circumference was the best predictor of yield. These results establish a baseline of data for initiating selection to improve biomass yield of M. sinensis and M. ×giganteus in a diverse set of relevant geographies.  相似文献   

17.
Nitrogen (N) addition typically increases overall plant growth, but the nature of this response depends upon patterns of plant nitrogen allocation that vary throughout the growing season and depend upon canopy position. In this study seasonal variations in leaf traits were investigated across a canopy profile in Miscanthus (Miscanthus × giganteus) under two N treatments (0 and 224 kg ha?1) to determine whether the growth response of Miscanthus to N fertilization was related to the response of photosynthetic capacity and nitrogen allocation. Miscanthus yielded 24.1 Mg ha?1 in fertilized plots, a 40% increase compared to control plots. Photosynthetic properties, such as net photosynthesis (A), maximum rate of rubisco carboxylation (Vcmax), stomatal conductance (gs) and PSII efficiency (Fv'/Fm'), all decreased significantly from the top of the canopy to the bottom, but were not affected by N fertilization. N fertilization increased specific leaf area (SLA) and leaf area index (LAI). Leaf N concentration in different canopy layers was increased by N fertilization and the distribution of N concentration within canopy followed irradiance gradients. These results show that the positive effect of N fertilization on the yield of Miscanthus was unrelated to changes in photosynthetic rates but was achieved mainly by increased canopy leaf area. Vertical measurements through the canopy demonstrated that Miscanthus adapted to the light environment by adjusting leaf morphological and biochemical properties independent of nitrogen treatments. GPP estimated using big leaf and multilayer models varied considerably, suggesting a multilayer model in which Vcmax changes both through time and canopy layer could be adopted into agricultural models to more accurately predict biomass production in biomass crop ecosystems.  相似文献   

18.
Plant cell walls, being repositories of fixed carbon, are important sources of biomass and renewable energy. Miscanthus species are fast growing grasses with a high biomass yield and they have been identified as potential bioenergy crops. Miscanthus x giganteus is the sterile hybrid between M. sinensis and M. sacchariflorus, with a faster and taller growth than its parents. In this study, the occurrence of cell wall polysaccharides in stems of Miscanthus species has been determined using fluorescence imaging with sets of cell wall directed monoclonal antibodies. Heteroxylan and mixed linkage-glucan (MLG) epitopes are abundant in stem cell walls of Miscanthus species, but their distributions are different in relation to the interfascicular parenchyma and these epitopes also display different developmental dynamics. Detection of pectic homogalacturonan (HG) epitopes was often restricted to intercellular spaces of parenchyma regions and, notably, the high methyl ester LM20 HG epitope was specifically abundant in the pith parenchyma cell walls of M. x giganteus. Some cell wall probes cannot access their target glycan epitopes because of masking by other polysaccharides. In the case of Miscanthus stems, masking of xyloglucan by heteroxylan and masking of pectic galactan by heteroxylan and MLG was detected in certain cell wall regions. Knowledge of tissue level heterogeneity of polysaccharide distributions and molecular architectures in Miscanthus cell wall structures will be important for both understanding growth mechanisms and also for the development of potential strategies for the efficient deconstruction of Miscanthus biomass.  相似文献   

19.
Increasing crop productivity to meet rising demands for food and energy, but doing so in an environmentally sustainable manner, is one of the greatest challenges for agriculture to date. In Ireland, Miscanthus × giganteus has the potential to become a major feedstock for bioenergy production, but the economic feasibility of its cultivation depends on high yields. Miscanthus fields can have a large number of gaps in crop cover, adversely impacting yield and hence economic viability. Predominantly positive effects of Miscanthus on biodiversity reported from previous research might be attributable to high crop patchiness, particularly during the establishment phase. The aim of this research was to assess crop patchiness on a field scale and to analyse the relationship between Miscanthus yield and species richness and abundance of selected taxa of farmland wildlife. For 14 Miscanthus fields at the end of their establishment phase (4–5 years after planting), which had been planted either on improved grassland (MG) or tilled arable land (MT), we determined patchiness of the crop cover, percentage light penetration (LP) to the lower canopy, Miscanthus shoot density and height, vascular plants and epigeic arthropods. Plant species richness and noncrop vegetation cover in Miscanthus fields increased with increasing patchiness, due to higher levels of LP to the lower canopy. The species richness of ground beetles and the activity density of spiders followed the increase in vegetation cover. Plant species richness and activity density of spiders on both MT and MG fields, as well as vegetation cover and activity density of ground beetles on MG fields, were negatively associated with Miscanthus yield. In conclusion, positive effects of Miscanthus on biodiversity can diminish with increasing productivity. This matter needs to be considered when assessing the relative ecological impacts of developing biomass crops in comparison with other land use.  相似文献   

20.
Miscanthus is a C4 bioenergy perennial crop characterized by its high potential yield. Our study aimed to compare the carbon storage capacities of Miscanthus sinensis (M. sinensis) with that of Miscanthus × giganteus (M. × giganteus) in field conditions in different types of soils in France. We set up a multi‐environment experimental network. On each trial, we tested two treatments: M. × giganteus established from rhizomes (Gr) and M. sinensis transplanted seedlings (Sp). We quantified the soil organic carbon (SOC) stock at equivalent soil mass for both genotypes in 2014 and 2019 and for two sampling depths: L1 (ca. 0–5 cm) and L1‐2 (ca. 0–30 cm). We also calculated the total and annual variation of the SOC stock and investigated factors that could explain the variation and the initial state of the SOC stock. ANOVAs were performed to compare the SOC stock, as well as the SOC stock variation rates across treatments and soil layers. Results showed that the soil bulk density did not vary significantly between 2014 and 2019 for both treatments (Gr and Sp). The SOC concentration (i.e. SOC expressed in g/kg) increased significantly between 2014 and 2019 in L1, whereas no significant evolution was found in L2 (ca. 5–30 cm). The SOC stock (i.e. SOC expressed in t/ha) increased significantly in the superficial layer L1 for M. × giganteus and M. sinensis, by 0.48 ± 0.41 and 0.54 ± 0.25 t ha?1 year?1 on average, respectively, although no significant change was detected in the layer L1‐2 for both genotypes. Moreover, SOC stocks in 2019 did not differ significantly between M. × giganteus and M. sinensis in the soil layers L1 and L1‐2. Lastly, our results showed that the initial SOC stock was significantly higher when miscanthus was grown after set‐aside than after annual crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号