首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 wt.% of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel (BD) production. Jojoba oil methyl esters (JME) were prepared from acid-catalyzed pretreated jojoba oil in order to evaluate important fuel properties of jojoba-based BD, including kinematic viscosity, cloud point (CP), pour point (PP), cold filter plugging point (CFPP), acid value (AV), oxidative stability, and lubricity. A comparison was made with soybean oil methyl esters (SME) and relevant BD fuel standards such as ASTM D6751 and EN 14214. JME was characterized using Fourier transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance. The CP, PP, and CFPP of JME were ?13°C, ?16°C, and ?14°C, respectively, which were superior to SME. The kinematic viscosity (40°C) of JME was 6.67 mm2/s, which was higher than observed for SME. Blends (B5 and B20) of JME in ultra-low sulfur diesel fuel (ULSD) were also evaluated for the aforementioned fuel properties and compared to an analogous set of blends of SME in ULSD and relevant petro diesel fuel standards such as ASTM D975 and D7467. JME blends in ULSD displayed improved low-temperature properties in comparison to neat ULSD and blends of SME in ULSD. In summary, jojoba oil has potential as an alternative, nonfood feedstock for BD production.  相似文献   

2.
The production of fatty acid methyl esters (FAMEs) from waste activated bleaching earth (ABE) discarded by the crude oil refining industry using lipase from Candida cylindracea was investigated in a 50-L pilot plant. Diesel oil or kerosene was used as an organic solvent for the transesterification of triglycerides embedded in the waste ABE. When 1% (w/w) lipase was added to waste ABE, the FAME content reached 97% (w/w) after reaction for 12 h at 25 degrees C with an agitation rate of 30 rpm. The FAME production rate was strongly dependent upon the amount of enzyme added. Mixtures of FAME and diesel oil at ratios of 45:55 (BDF-45) and 35:65 (BDF-35) were assessed and compared with the European specifications for biodiesel as automotive diesel fuel, as defined by pr EN 14214. The biodiesel quality of BDF-45 met the EN 14214 standard. BDF-45 was used as generator fuel, and the exhaust emissions were compared with those of diesel oil. The CO and SO2 contents were reduced, but nitrogen oxide emission increased by 10%. This is the first report of a pilot plant study of lipase-catalyzed FAME production using waste ABE as a raw material. This result demonstrates a promising reutilization method for the production of FAME from industrial waste resources containing vegetable oils for use as a biodiesel fuel.  相似文献   

3.
Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a variety of less common oils. In this work, Moringa oleifera oil is evaluated for the first time as potential feedstock for biodiesel. After acid pre-treatment to reduce the acid value of the M. oleifera oil, biodiesel was obtained by a standard transesterification procedure with methanol and an alkali catalyst at 60 degrees C and alcohol/oil ratio of 6:1. M. oleifera oil has a high content of oleic acid (>70%) with saturated fatty acids comprising most of the remaining fatty acid profile. As a result, the methyl esters (biodiesel) obtained from this oil exhibit a high cetane number of approximately 67, one of the highest found for a biodiesel fuel. Other fuel properties of biodiesel derived from M. oleifera such as cloud point, kinematic viscosity and oxidative stability were also determined and are discussed in light of biodiesel standards such as ASTM D6751 and EN 14214. The (1)H NMR spectrum of M. oleifera methyl esters is reported. Overall, M. oleifera oil appears to be an acceptable feedstock for biodiesel.  相似文献   

4.
The effect of fatty acids chain length (LC) and its interaction with unsaturation degree (UD) on important biodiesel quality parameters was studied. Low calorific value, kinematic viscosity, flash point, cetane number and cold filter plugging point of biodiesel blends covering a wide range of fatty acids were analyzed. Analytical results were processed with statistical regression to obtain a prediction model for each property, combining LC and UD. Due to the antagonistic effects of the chemical composition over quality properties, the Derringer desirability function was proposed to allow the most suitable fatty acid composition. This target was achieved considering an average of 1.26 double bounds and 17 carbon atoms. A set of combinations of LC and UD values that provides a biodiesel that fits the European standard EN 14214 was proposed. It was found that a reduction of FAME LC allows a lower UD while keeping biodiesel specifications under the standard limits.  相似文献   

5.
In recent years, microalgae-based carbon-neutral biofuels (i.e., biodiesel) have gained considerable interest due to high growth rate and higher lipid productivity of microalgae during the whole year, delivering continuous biomass production as compared to vegetable-based feedstocks. Therefore, biodiesel was synthesized from three different microalgal species, namely Tetraselmis sp. (Chlorophyta) and Nannochloropsis oculata and Phaeodactylum tricornutum (Heterokontophyta), and the fuel properties of the biodiesel were analytically determined, unlike most studies which rely on estimates based on the lipid profile of the microalgae. These include density, kinematic viscosity, total and free glycerol, and high heating value (HHV), while cetane number (CN) and cold filter plugging point (CFPP) were estimated based on the fatty acid methyl ester profile of the biodiesel samples instead of the lipid profile of the microalgae. Most biodiesel properties abide by the ASTM D6751 and the EN 14214 specifications, although none of the biodiesel samples met the minimum CN or the maximum content of polyunsaturated fatty acids with ≥4 double bonds as required by the EN 14214 reference value. On the other hand, bomb calorimetric experiments revealed that the heat of combustion of all samples was on the upper limit expected for biodiesel fuels, actually being close to that of petrodiesel. Post-production processing may overcome the aforementioned limitations, enabling the production of biodiesel with high HHV obtained from lipids present in these microalgae.  相似文献   

6.
Biodiesel is an alternative fuel that has been used for partial or total substitution of diesel to reduce its environmental impacts. Prior studies on this topic have focused on the quest for better synthesis process, new catalysts and low-cost non-food and raw materials to improve the economic and sustainable production as well as product quality. In this study, acidic oil from macauba, a palm tree native to South America that has no food uses, was converted into biodiesel. The esterification and transesterification reactions were performed with methanol, ethanol and isobutanol with the goal of improving the cold properties of the biodiesel. The isobutyl ester exhibited the lowest freezing point temperature but underperformed outside of international specifications for kinematic viscosity; it also exhibited a low ester content. The methyl and ethyl esters were within the specifications of the international standards for ester content, density, kinematic viscosity and sulphur content. The ethyl ester produced from macauba oil displayed better properties in cold conditions than methyl and isobutyl esters studied here, with a cold filter plugging point of 0 °C. Its onset crystallisation temperature was reduced from ?5.96 to ?13.41 °C when subjected to fractional crystallisation. The ethyl ester exhibited the best lubricity value among the other esters studied.  相似文献   

7.
Turnip oil (TO; Raphanus sativus L.) produces seeds that contain around 26 wt% of inedible base stock that are suitable as a potential feedstock for biodiesel production. A turnip oil methyl ester (TME) was prepared from acid-catalyzed pretreated TO in an effort to evaluate important fuel properties of turnip oil-based biodiesel, such as kinematic viscosity, cloud point, pour point (PP), cold filter plugging point, acid value, oxidative stability and lubricity. A comparison was made with soybean oil methyl esters (SME) as per biodiesel fuel standards such as ASTM D6751 and EN 14214. TME was characterized using FTIR, HPLC and 1H NMR. Except PP property, SME displays superior fuel properties compared to TME. Blends (B5 and B20) of TME in ultra-low sulphur diesel fuel (ULSD) were also assessed for the aforesaid fuel properties and compared to an analogous set of blends of soybean oil methyl ester in ULSD as per petro diesel fuel standards such as ASTM D975 and D7467. TME B5 blends in ULSD displayed improved PP property in comparison to neat ULSD and blends of SME in ULSD. It was demonstrated that the B5 and B20 blends of TME in ULSD had acceptable fuel properties as per ASTM D975 (for B5 blend) and ASTM D7467 (for B20 blend). In summary, turnip oil has potential as an alternative, non-food feedstock for biodiesel production.  相似文献   

8.
Increase in the demand for ethanol has resulted in growth in the dry grind (DG) ethanol industry. In DG processing, the whole corn kernel is fermented, resulting in two main coproducts, ethanol and distillers dried grains with solubles (DDGS). Marketing of DDGS is critical to the economic stability of DG plants. The composition of DDGS can vary considerably; this reduces market value. Factors that cause variation in composition need to be evaluated. The objective was to determine the relationship between composition of corn and composition of DDGS. Samples of corn and DDGS were obtained from a DG ethanol plant and analyzed for protein, fat, starch and other nutrients. Concentrations of protein, fiber and starch were similar to published data for corn but were higher for DDGS. Coefficients of variation for protein fat and fiber concentrations were similar for corn and DDGS. There were no significant correlations between concentrations of components in corn and those in DDGS. Variation in the composition of DDGS was not related to variation in corn composition and probably was due to variation in processing streams or processing techniques. This implies that reducing the variation in composition of DDG will require modification of processing strategies.  相似文献   

9.
Dried distillers' grain with solubles (DDGS) is a by-product of ethanol production, and its use as cattle feed has increased as a result of the expansion of the fuel ethanol industry. However, the inclusion of corn DDGS into feedlot diets may increase the shedding of Escherichia coli O157:H7. This study investigated whether corn or wheat DDGS at 2 concentrations (20% or 40% vs. 100% barley grain) affected the survival of E.?coli O157:H7 in incubations of ruminal digesta and feces. Neither the type nor the level of DDGS had any effect on fermentation or the survival of E. coli O157:H7 in ruminal digesta. However, there was a time by DDGS interaction (p?< 0.05), where the numbers of E.?coli O157:H7 in feces did not differ after 4 or 12?h of incubation but were greater after 24?h in both 40% wheat and 40% corn DDGS as compared with other treatments. Additionally, after 24?h, the numbers of E. coli O157:H7 were greater in fecal incubations with corn DDGS than with wheat DDGS (p?< 0.05). The differences in the numbers of E.?coli O157:H7 were not attributable to changes in pH or in concentrations of volatile fatty acids in the media. These results suggest that the inclusion of high levels of corn or wheat DDGS in feedlot diets of cattle may encourage the survival of E. coli O157:H7 in feces.  相似文献   

10.
Oftentimes, corn processors believe that ground corn (raw material) and distillers dried grains with solubles (DDGS) are interrelated in certain quality parameters. Yet, previous studies, although rather limited, have not established this relationship. In this study, six ground corn samples and their resulting DDGS were analyzed for particle size distribution (PSD), using a series of six selected US standard sieves: Nos. 8, 12, 18, 35, 60, and 100, and a pan. The original sample and sieve sized fractions were measured for contents of moisture, protein, oil, ash and starch, and surface color. Total carbohydrate (CHO) and total non-starch CHO were also calculated. Results show that the geometric mean diameter (dgw) of particles varied with individual corn and DDGS samples, and that dgw of DDGS was larger than that of corn (0.696 vs. 0.479 mm, average values), indicating that during conversion of corn to DDGS, certain particles became enlarged. For dgw and mass frequency of individual particle size classes, the relationship between ground corn and DDGS varied, but PSD of the whole sample was well correlated between them (r = 0.807). Upon conversion from corn to DDGS, on an average, protein was concentrated 3.59 times; oil, 3.40 times; ash, 3.32 times; and total non-starch CHO, 2.89 times. There were some positive correlations in contents of protein and non-starch CHO and in L value between corn and DDGS. Yet, variations in nutrients and color attributes were larger in DDGS than in corn. For either corn or DDGS, these variations were larger in sieved fractions than in the whole fraction. Raw material, processing method and addition of yeasts are among major factors considered for causing larger variations in these attributes among DDGS. The study partially supports the common belief by processors that quality attributes of corn affect those of DDGS.  相似文献   

11.
Ethanol-diesel fuel blends -- a review   总被引:16,自引:0,他引:16  
Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.  相似文献   

12.
The objectives of this study were to determine the effects of conjugated linoleic acid (CLA) or betaine on the growth performance, carcass characteristics and fatty acid composition in backfat and belly fat of pigs fed distillers dried grains with solubles (DDGS). Thirty-two (60±2 kg) crossbred barrows (Duroc×Landrace×Yorkshine) were assigned to one of four diets randomly: (1) the control diet containing no corn DDGS (control group); (2) the diet containing 30% corn DDGS (DDGS-fed group); (3) the diet containing 30% corn DDGS and 10 g/kg CLA (CLA-fed group); (4) the diet containing 30% corn DDGS and 1 g/kg BET (BET-fed group). The pigs fed DDGS showed that the percentages of C18:2, polyunsaturated fatty acid (PUFA) and iodine value (IV) increased, while C18:1, saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) decreased. Pigs fed the DDGS+CLA or DDGS+betaine diets showed the increased percentage of SFA, and the decreased percentage of C18:2, PUFA and IV. In conclusion, results confirmed that the diets containing 30% DDGS had no detrimental effects on growth performance, but increased the percentage of PUFA and IV and decreased the percentage of SFA and MUFA in the backfat and belly fat. However, supplementation with CLA or BET can part reverse these effects on carcass fat in finishing pigs.  相似文献   

13.
Preparation and characterization of bio-diesels from various bio-oils   总被引:19,自引:0,他引:19  
Methyl, ethyl, 2-propyl and butyl esters were prepared from canola and linseed oils through transesterification using KOH and/ or sodium alkoxides as catalysts. In addition, methyl and ethyl esters were prepared from rapeseed and sunflower oils using the same catalysts. Chemical composition of the esters was determined by HPLC for the class of lipids and by GC for fatty acid compositions. The bio-diesel esters were characterized for their physical and fuel properties including density, viscosity, iodine value, acid value, cloud point, pure point, gross heat of combustion and volatility. Methyl and ethyl esters prepared from a particular vegetable oil had similar viscosities, cloud points and pour points, whereas methyl, ethyl, 2-propyl and butyl esters derived from a particular vegetable oil had similar gross heating values. However, their densities, which were 2 7% higher than those of diesel fuels, statistically decreased in the order of methyl approximately 2-propyl > ethyl > butyl esters. Butyl esters showed reduced cloud points (-6 degrees C to -10 degrees C) and pour points (-13 degrees C to -16 degrees C) similar to those of summer diesel fuel having cloud and pour points of -8 degrees C and -15 degrees C, respectively. The viscosities of bio-diesels (3.3-7.6 x 10(-4) Pa s at 40 degrees C) were much less than those of pure oils (22.4-45.1 x 10(-4) Pa s at 40 degrees C) and were twice those of summer and winter diesel fuels (3.50 and 1.72 x 10(-4) Pa s at 40 degrees C), and their gross heat contents of approximately 40 MJ/kg were 11% less than those of diesel fuels (approximately 45 MJ/kg). For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier. However, the bio-diesels were considerably less volatile than the conventional diesel fuels.  相似文献   

14.
Synthesis of surrogate molecules is particularly useful for generating in sight of structural-activity relationships, understanding processes and improving the performance. In order to improve upon the physico-chemical properties of biodiesel, methyl, ethyl, isopropyl and n-butyl esters of β-branched fatty acid have been synthesized, initiating from β-branched alcohols. β-Branched alcohols upon oxidation gave corresponding acids, which were converted to their esters. The synthesized esters have substantially better oxidative stability, exhibited by Rancimat oxidation induction period of more than 24 h. The cloud point of synthesized esters is <−36 °C, pour point is <−42 °C and CFPP is <−21 °C, which is substantially better than fatty acid methyl esters. Besides achieving the objective of better oxidative stability and improved low temperature properties, the synthesized surrogate esters have viscosity in the range of 4.2–4.6 cSt at 40 °C, meeting the international diesel and biodiesel standards. The cetane number of synthesized esters is 62–69, which is much better than diesel and biodiesel. The blends of the synthesized esters in diesel at 5% and 10% meet Indian standards of diesel.  相似文献   

15.
The energy security needs of energy importing nations continue to escalate. It is clear that biofuels can help meet some of the increasing need for energy. Theoretically, these can be produced from a variety of biological materials, including agricultural residues (such as corn stover and wheat straw), perennial grasses, legumes, algae, and other biological materials. Currently, however, the most heavily utilized material is corn starch. Industrial fuel ethanol production in the US primarily uses corn, because it is readily converted into fuel at a relatively low cost compared to other biomass sources. The production of corn-based ethanol in the US is dramatically increasing. As the industry continues to grow, the amount of byproducts and coproducts also increases. At the moment, the nonfermentable residues (which are dried and sold as distillers dried grains with solubles – DDGS) are utilized only as livestock feed. The sale of coproducts provides ethanol processors with a substantial revenue source and significantly increases the profitability of the production process. Even though these materials are used to feed animals in local markets, as the size and scope of the industry continues to grow, the need to ship large quantities of coproducts grows as well. This includes both domestic as well as international transportation. Value-added processing options offer the potential to increase the sustainability of each ethanol plant, and thus the industry overall. However, implementation of new technologies will be dependent upon how their costs interact with current processing costs and the logistics of coproduct deliveries. The objective of this study was to examine some of these issues by developing a computer model to determine potential cost ramifications of using various alternative technologies during ethanol processing. This paper focuses specifically on adding a densification unit operation (i.e., pelleting) to produce value-added DDGS at a fuel ethanol manufacturing plant. We have examined the economic implications of pelleting DDGS for varying DDGS production rates (100–1000 tons/d) and pelleting rates (0–100%), for a series of DDGS sales prices ($50–$200/ton). As the proportion of pelleting increases, the cost of transporting DDGS to distant markets drastically declines, because the rail cars can be filled to capacity. For example, at a DDGS sales price of $50/ton, 100% pelleting will reduce shipping costs (both direct and indirect) by 89% compared to shipping the DDGS in bulk form (i.e., no pelleting), whereas at a DDGS sales price of $200/ton, it will reduce costs by over 96%. It is clear that the sustainability of the ethanol industry can be improved by implementing pelleting technology for the coproducts, especially at those plants that ship their DDGS via rail.  相似文献   

16.
The aim of this work was the study of the influence of the raw material composition on biodiesel quality, using a transesterification reaction. Thus, ten refined vegetable oils were transesterificated using potassium methoxide as catalyst and standard reaction conditions (reaction time, 1h; weight of catalyst, 1 wt.% of initial oil weight; molar ratio methanol/oil, 6/1; reaction temperature, 60 degrees C). Biodiesel quality was tested according to the standard [UNE-EN 14214, 2003. Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods]. Some critical parameters like oxidation stability, cetane number, iodine value and cold filter plugging point were correlated with the methyl ester composition of each biodiesel, according to two parameters: degree of unsaturation and long chain saturated factor. Finally, a triangular graph based on the composition in monounsaturated, polyunsaturated and saturated methyl esters was built in order to predict the critical parameters of European standard for whatever biodiesel, known its composition.  相似文献   

17.
Biodegradation experiments for diesel/biodiesel blends in liquid cultures by-petroleum degrading microbial consortium showed that for low amendments of biodiesel (10%) the overall biodegradation efficiency of the mixture after seven days was lower than for petroleum diesel fuel. Preferential usage of methyl esters in the broad biodiesel concentration range and diminished biodegradation of petroleum hydrocarbons for 10% biodiesel blend was confirmed. Rhamnolipids improved biodegradation efficiency only for blends with low content of biodiesel. Emulsion formation experiments showed that biodiesel amendments significantly affected dispersion of fuel mixtures in water. The presence of rhamnolipids biosurfactant affected stability of such emulsions and altered cell surface properties of tested consortium.  相似文献   

18.

Aims

The effect of feeding dried distillers grains with solubles (DDGS) or reduced‐fat DDGS (RFDG) on ruminal methanogenesis and the rumen bacterial community of dairy cattle was evaluated.

Methods and Results

Treatments were CONT, a diet with no distillers grains; DG, inclusion of 20% DDGS; rfDG, inclusion of 20% RFDG; and MIX, inclusion of 10% DDGS and 10% RFDG. Methane emission was measured; rumen bacterial community was evaluated by sequencing the V4 region of the 16S rRNA gene. Total methane production remained unaffected. However, feeding distillers grains tended to reduce methanogenesis per unit of feed intake, decreased the abundance of the phylum Bacteroidetes and tended to increase Firmicutes. The abundance of Prevotellaceae positively correlated with feed intake; methane emission was positively correlated with the abundance of Prevotellaceae and was negatively correlated with the abundance of Succinivibrionaceae.

Conclusions

DDGS or RFDG may reduce methanogenesis per unit of feed intake; shifts in the abundance of predominant ruminal bacterial families may influence methane formation, likely because of their role on hydrogen liberation and utilization pathways.

Significance and Impact of the Study

Replacing corn and soybean meal with DDGS or RFDG in dairy rations may reduce the proportion of dietary energy wasted as methane, without detrimental effects on the overall bacterial population.  相似文献   

19.
Liu K  Han J 《Bioresource technology》2011,102(3):3110-3118
For determining variation in mineral composition and phosphorus (P) profile among streams of dry-grind ethanol production, samples of ground corn, intermediate streams, and distillers dried grains with solubles (DDGS) were obtained from three commercial plants. Most attributes (dry matter concentrations) increased significantly from corn to cooked slurry but fermentation caused most significant increase in all attributes. During centrifugation, more minerals went into thin stillage than wet grains, making minerals most concentrated in the former. Mineral increase in DDGS over corn was about 3 fold, except for Na, S, Ca, and Fe. The first three had much higher fold of increase, presumably due to exogenous addition. During fermentation, phytate P and inorganic P had 2.54 and 10.37 fold of increase over corn, respectively, while relative to total P, % phytate P decreased and % inorganic P increased significantly. These observations suggest that phytate underwent some degradation, presumably due to activity of yeast phytase.  相似文献   

20.
Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z‐factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号