首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
The coordination of iron(III) ion to hyaluronic acid (Hyal) in aqueous solutions and solid state was accomplished by potentiometric titrations and infrared spectroscopy. The potentiometric titration studies provided the binding constants for the complexes found in the systems and the speciation of these species according to the variation of pH values. The complexes found presented a complexing ability through both the chelating moieties of Hyal (via the N-glucosamine and D-glucoronic acid), showing no special preference for either one while in solid state, but when in aqueous solution the complexation via the N-glucosamine moiety was the preferred, forming two complexed species, ML and ML(2) (log K(ML)=8.2 and log K(ML2)=7.9). The presence of a mu-oxo complex via the D-glucoronic acid was also detected in both aqueous (log K=6.7) and solid states via the N-glucosamine and D-glucoronic acid simultaneously linked to two Hyal chains. A structure for this latter complex was suggested. The results indicated that these complexes could be used in eliminating the excess iron(III) in living organisms.  相似文献   

2.
‘Intermediate’ spin iron(III) has been identified, using Mössbauer spectroscopy, in materials containing protoporphyrin(IX) iron(III). These materials were all precipitated from acid pH in the presence of a variety of ligands. The implications of the results are discussed both in comparison to other known ‘intermediate’ spin porphyrins and for their relevance to haem proteins.  相似文献   

3.
An artificial peroxidase-like hemoprotein has been obtained by associating a monoclonal antibody, 13G10, and its iron(III)-alpha,alpha,alpha,beta-meso-tetrakis(ortho-carboxyphenyl)porphyrin [Fe(ToCPP)] hapten. In this antibody, about two-thirds of the porphyrin moiety is inserted in the binding site, its ortho-COOH substituents being recognized by amino-acids of the protein, and a carboxylic acid side chain of the protein acts as a general acid base catalyst in the heterolytic cleavage of the O-O bond of H2O2, but no amino-acid residue is acting as an axial ligand of the iron.We here show that the iron of 13G10-Fe(ToCPP) is able to bind, like that of free Fe(ToCPP), two small ligands such as CN-, but only one imidazole ligand, in contrast to to the iron(III) of Fe(ToCPP) that binds two. This phenomenon is general for a series of monosubstituted imidazoles, the 2- and 4-alkyl-substituted imidazoles being the best ligands, in agreement with the hydrophobic character of the antibody binding site. Complexes of antibody 13G10 with less hindered iron(III)-tetraarylporphyrins bearing only one [Fe(MoCPP)] or two meso-[ortho-carboxyphenyl] substituents [Fe(DoCPP)] also bind only one imidazole. Finally, peroxidase activity studies show that imidazole inhibits the peroxidase activity of 13G10-Fe(ToCPP) whereas it increases that of 13G10-Fe(DoCPP). This could be interpreted by the binding of the imidazole ligand on the iron atom which probably occurs in the case of 13G10-Fe(ToCPP) on the less hindered face of the porphyrin, close to the catalytic COOH residue, whereas in the case of 13G10-Fe(DoCPP) it can occur on the other face of the porphyrin. The 13G10-Fe(DoCPP)-imidazole complex thus constitutes a nice artificial peroxidase-like hemoprotein, with the axial imidazole ligand of the iron mimicking the proximal histidine of peroxidases and a COOH side chain of the antibody acting as a general acid-base catalyst like the distal histidine of peroxidases does.  相似文献   

4.
In the reaction of [Fe(H2O)6]3+ with pyrazoic acid, reduction of iron(III) to iron(II) is observed. When an excess of iron is present, the reaction involves a transfer of four electrons per mole of acid. At room temperature the redox reaction, which is dependent on hydrogen ion, iron(III) and pyrazoic acid concentrations, is rather slow and is the rate-determining step. The kinetic study was carried out at 50.0 ± 0.1 °C. The redox reaction is followed by a fast reaction of the iron(II) with an excess of ligand, resulting in the production of well-known complexes, where the acid acts as a chelating ligand through the nitrogen and oxygen atoms.  相似文献   

5.
Interaction between iron(II) and acetohydroxamic acid (Aha), alpha-alaninehydroxamic acid (alpha-Alaha), beta-alaninehydroxamic acid (beta-Alaha), hexanedioic acid bis(3-hydroxycarbamoyl-methyl)amide (Dha) or desferrioxamine B (DFB) under anaerobic conditions was studied by pH-metric and UV-Visible spectrophotometric methods. The stability constants of complexes formed with Aha, alpha-Alaha, beta-Alaha and Dha were calculated and turned out to be much lower than those of the corresponding iron(II) complexes. Stability constants of the iron(II)-hydroxamate complexes are compared with those of other divalent 3d-block metal ions and the Irving-Williams series of stabilities was found to be observed. Above pH 4, in the reactions between iron(II) and desferrioxamine B, the oxidation of the metal ion to iron(III) by the ligand was found. The overall reaction that resulted in the formation of the tris-hydroxamato complex [Fe(HDFB)]+ and monoamide derivative of DFB at pH 6 is: 2Fe2+ + 3H4DFB+ = 2[Fe(HDFB)]+ + H3DFB-monoamide+ + H2O + 4H+. Based on these results, the conclusion is that desferrioxamine B can uptake iron in iron(III) form under anaerobic conditions.  相似文献   

6.
《Inorganica chimica acta》1988,154(2):221-224
Polynuclear sulfur bridged complexes where the neutral complex tris(2-aminoethanethiolato)cobalt(III) acts as a tridentate ligand to rhodium(III), iridium(III) and osmium(III) have been prepared. These complexes have been characterized by electronic spectroscopy, vibrational spectroscopy and nuclear magnetic resonance spectroscopy. Along with the previously prepared complexes of iron(III), ruthenium(III) and cobalt(III), these complexes form two series of complexes with the group 8 and group 9 elements from all three transition series.  相似文献   

7.
A flavonol iron(III) complex, [Fe(flavonolato)(2)Cl(MeOH)], has been prepared. The compound has been characterized by X-ray crystallography, spectroscopy, magnetism and electronic paramagnetic resonance (EPR) at X- and Q-band. The geometrical environment around the metal is best described as rhombic distorted octahedral. This distortion has also been inferred from the magnetic measurements and from the EPR spectra at different temperatures, E/D(rhombicity parameter) approximately 0.06. The DNA cleavage activity of the iron(III) complex with and without ascorbate/hydrogen peroxide is reported. Mechanisms of the oxidative cleavage have been proposed when DNA strand scission is performed both with and without ascorbate/hydrogen peroxide activation.  相似文献   

8.
The kinetics and mechanisms of the reactions of iron(III) with the hydroxy cinnamic acid based ligands caffeic, chlorogenic, sinapic and ferulic acids and the flavonoid naringin have been investigated in aqueous solution. The mechanisms for caffeic and chlorogenic acid are generally consistent with the formation of a 1:1 complex that subsequently decays through an electron transfer reaction. On reaction with iron(III), ferulic and sinapic acids undergo an electron transfer without the prior formation of any complex. There was no evidence of electron transfer occurring in the complex formed when iron(III) is reacted with naringin. Rate constants for k1 (formation) and k(-1) (dissociation) have been evaluated for the complex formation reactions of [Fe(H2O)6(OH)]2+ with caffeic acid, chlorogenic acid and naringin. Analysis of the kinetic data yielded stability constants, equilibrium constants for protonation of the iron(III) chlorogenic acid complex initially formed, together with the rate constants for complex decomposition through intramolecular electron transfers and in the case of caffeic acid and chlorogenic acid, rate constants for the iron(III) assisted decomposition of the initial complex formed. Some of the suggested mechanisms and calculated rate constants are validated by calculations carried out using global analysis of time dependent spectra.  相似文献   

9.
Variable temperature (298-4.2 K) EPR spectra of a tris(dithiocarbamato)iron(III) complex involving 6A1g2T2g spin-crossover have been described. Results favour a solid solution model for the spin-crossover.  相似文献   

10.
《Inorganica chimica acta》1986,112(2):139-145
In addition to the variety of products formed during the reaction of iron(III) halobisdithiocarbamates with halogens, some novel fluxional homobinuclear iron(III) complexes with two different coordination spheres around the magnetic centers have also been synthesized and studied. The formation of these products depends on the nature of both the molecular halogen and the reagent complex, as well as on the reaction conditions. The new compounds have been characterized chemically and by means of spectroscopic methods and magnetic susceptibility measurements. The volatility characteristics and thermogravimetric analysis data for the complexes were also studied. Finally, a general mechanism accounting for the variety of products formed in the reactions of iron(III) halobisdithiocarbamates with molecular halogens is proposed.  相似文献   

11.
Complexes of iron(II) and iron(III) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H), 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (4-Me-5-NH2-1-iqtsc-H) and 4-(m-aminophenyl)-2-formylpyridine thiosemicarbazone (4-m-NH2ph-2-pytsc-H) were synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibilities (from room temperature down to liquid N2 temperature), and M?ssbauer, electronic, and infrared spectral studies. On the basis of these studies, a highly distorted, high-spin, five-coordinate structure for Fe(HL)SO4 (HL = 1-iqtsc-H, 4-Me-5-NH2-1-iqtsc-H or 4-m-NH2ph-2-pytsc-H) and a distorted, low-spin, octahedral structure for Fe(HL)Cl2 are suggested. The EPR spectra of iron(III) complexes show that all have dxy low-spin ground state. All these complexes have been screened for their antitumor activity against the P 388 lymphocytic leukemia test system in mice and have been found to possess significant activity at the dosages employed.  相似文献   

12.
We have investigated the reaction products of several iron(III) compounds with hydrogen peroxide, and have found that hydrogen peroxide promotes the formation of an oxo-bridged iron(III) species in the presence of methanol (electron donor), and carboxyl groups of the ligand systems play a role to give the tetranuclear iron(III) compound containing a bent Fe-O-Fe unit (O: oxo oxygen atom). Based on the present results and the facts that L-chains of human ferritins lack ferroxidase activity, but are richer in carboxyl groups (glutamates) exposed on the cavity surface, it seems reasonable to conclude that (i) the hydrogen peroxide released in the H-subunit may contribute to the formation of a diferric oxo-hydrate in the L-subunit, (ii) the formation of a bent oxo-bridged iron(III) species is essentially important in the L-subunit, and (iii) rich carboxyl groups in L-subunits contribute to facilitate iron nucleation and mineralization through the capture and activation of the peroxide ion, and formation of a stable bent oxo-bridged iron(III) species.  相似文献   

13.
Proton magnetic resonance and absorption spectroscopy have been used to examine solutions of mixtures of reduced and oxidised iron protoporphyrin IX chloride in deuterated pyridine. The Fe(II) species are low spin but the Fe(III) complex is an equilibrium mixture of high and low spin forms. The movement to high field of the ring protons of the low-spin Fe(III) signals alone increases regularly with the amount of diamagnetic Fe(II) relative to the paramagnetic Fe(III) haem. The low spin Fe(III) must be in rapid exchange with the low-spin Fe(II) complex but not with the high-spin form. The addition of carbon monoxide to the Fe(II)/Fe(III) mixture effectively blocks electron exchange between the complexes as shown by a return of the proton resonances of the Fe(III) complex to positions seen in the absence of any Fe(II).  相似文献   

14.
The iron(III) reductase activity of Geobacter sulfurreducens was determined with the electron donor NADH and the artificial electron donor horse heart cytochrome c. The highest reduction rates were obtained with Fe(III) complexed by nitrilotriacetic acid as an electron acceptor. Fractionation experiments indicated that no iron(III) reductase activity was present in the cytoplasm, that approximately one-third was found in the periplasmic fraction, and that two-thirds were associated with the membrane fraction. Sucrose gradient separation of the outer and cytoplasmic membranes showed that about 80% of the iron(III) reductase was present in the outer membrane. The iron(III) reductase could be solubilized from the membrane fraction with 0.5 M KCl showing that the iron(III) reductase was weakly bound to the membranes. In addition, solubilization of the iron(III) reductase from whole cells with 0.5 M KCl, without disruption of cells, indicated that the iron(III) reductase is a peripheral protein on the outside of the outer membrane. Redox difference spectra of KCl extracts showed the presence of c-type cytochromes which could be oxidized by ferrihydrite. Only one activity band was observed in native polyacrylamide gels stained for the iron(III) reductase activity. Excision of the active band from a preparative gel followed by extraction of the proteins and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of high-molecular-mass, cytochrome-containing proteins in this iron(III) reductase activity band. From these experimental data it can be hypothesized that the iron(III) reductase of G. sulfurreducens is a peripheral outer membrane protein that might contain a c-type cytochrome.  相似文献   

15.
The interactions between the cationic polymer chitosan (Chit) and iron(III) were investigated. The solution properties were studied by pH-metry, viscometry and dynamic light scattering. Solid state iron(III)-Chit samples were also prepared and characterized by IR spectroscopy and electron microscopy. In aqueous solutions, the precipitation pH of the iron(III) oxyhydroxide (FeOOH) is significantly shifted towards the higher pH values in the presence of Chit indicating that some interaction takes place between the iron(III) and the polymer. However, the additivity of the pH-metric titration curves, the lack of variation both in the viscometric and IR spectra of Chit in the presence and absence of iron(III), indicate the lack of direct complexation between the Chit and ferric ions. Isolated FeOOH nanospheres of 5-10 nm diameter were observed on the transmission electron microscopic pictures of samples obtained from solutions containing iron(III) and Chit, while from DLS measurements hydrodynamic units with a few hundred nm in diameter were identified. Our data support that Chit acts as steric stabilizer and inhibits the macroscopic aggregation of the subcolloidal FeOOH particles. Thus the iron(III)-Chit interactions offer a simple and economic way to fabricate nanometric size FeOOH spheres, morphologically similar to the core of iron(III)-storage protein, ferritin.  相似文献   

16.
Vitamin D3 (LH) complexes with manganese(II), iron(II), iron(III) and zinc(II) were identified in water-ethanol medium (30/70). Their stability constants were determined at 298 K and at a constant ionic strength of 0.100 M using potentiometric methods. The computerisation of the experimental data showed the presence of ML (M = metal, L = deprotonated vitamin D3) and ML2 species in all cases; in addition, the ML3 iron(III) complex was detected. The calculated overall stability constants beta for MnIIL, FeIIL, FeIIIL and ZnIIL are, respectively, in logarithms, 12.4, 16.5, 28.5 and 16.5. Under the experimental conditions, the only protonated species MLH detected was with iron(III).  相似文献   

17.
Graminaceous plant species acquire soil iron by the release of phytosiderophores and subsequent uptake of iron(III)-phytosiderophore complexes. As plant species differ in their ability for phytosiderophore hydroxylation prior to release, an electrophoretic method was set up to determine whether hydroxylation affects the net charge of iron(III)-phytosiderophore complexes, and thus chelate stability. At pH 7.0, non-hydroxylated (deoxymugineic acid) and hydroxylated (mugineic acid; epi-hydroxymugineic acid) phytosiderophores form single negatively charged iron(III) complexes, in contrast to iron(III)-nicotianamine. As the degree of phytosiderophore hydroxylation increases, the corresponding iron(III) complex was found to be less readily protonated. Measured pKa values of the amino groups and calculated free iron(III) concentrations in presence of a 10-fold chelator excess were also found to decrease with increasing degree of hydroxylation, confirming that phytosiderophore hydroxylation protects against acid-induced protonation of the iron(III)-phytosiderophore complex. These effects are almost certainly associated with intramolecular hydrogen bonding between the hydroxyl and amino functions. We conclude that introduction of hydroxyl groups into the phytosiderophore skeleton increases iron(III)-chelate stability in acid environments such as those found in the rhizosphere or the root apoplasm and may contribute to an enhanced iron acquisition.  相似文献   

18.
The bacterial fish pathogen Vibrio anguillarum serotype O2 strain RV22 produces the mono catecholate siderophore Vanchrobactin (Vb) under conditions of iron deficiency. Vb contains two potential bidentate coordination sites: catecholate and salicylate groups. The iron(III) coordination properties of Vb is investigated in aqueous solutions using spectrophotometric and potentiometric methods. The stepwise equilibrium constants (log?K) for successive addition of Vb dianion to a ferric ion are 19.9; 13.3, and 9.5, respectively, for an overall association constant of 42.7. Based on the previous results, we estimated the equilibrium concentration of free iron(III) under physiological conditions for pH 7.4 solution containing 10(-6) M total iron and 10(-5) M total Vb as pFe = 20 (=-log[Fe(3+)]). The Vb model compounds catechol (Cat) and 2,4-dihydroxy-N-(2-hydroxyethyl)benzamide (Dhb) have also been examined, and the obtained results show that the interaction of the whole system of Vb that contains the ferric-chelating groups of both Dhb and Cat, is synergically greater than the separate parts; i.e. Vb is the best chelating agent either in acid or basic media. In summary, bacteria employing Vb-mediated iron transport thus are able to compete effectively for iron with other microorganisms within which they live.  相似文献   

19.
An electron-rich iron(III) porphyrin complex (meso-tetramesitylporphinato)iron(III) chloride [Fe(TMP)Cl], was found to catalyze the epoxidation of olefins by aqueous 30% H2O2 when the reaction was carried out in the presence of 5-chloro-1-methylimidazole (5-Cl-1-MeIm) in aprotic solvent. Epoxides were the predominant products with trace amounts of allylic oxidation products, indicating that Fenton-type oxidation reactions were not involved in the olefin epoxidation reactions. cis-Stilbene was stereospecifically oxidized to cis-stilbene oxide without giving isomerized trans-stilbene oxide product, demonstrating that neither hydroperoxy radical (HOO·) nor oxoiron(IV) porphyrin [(TMP)FeIV=O] was responsible for the olefin epoxidations. We also found that the reactivities of other iron(III) porphyrin complexes such as (meso-tetrakis(2,6-dichlorophenyl)porphinato)iron(III) chloride [Fe(TDCPP)Cl], (meso-tetrakis(2,6-difluorophenyl)porphinato)iron(III) chloride [Fe(TDFPP)Cl], and (meso-tetrakis(pentafluorophenyl)porphinato)iron(III) chloride [Fe(TPFPP)Cl] were significantly affected by the presence of the imidazole in the epoxidation of olefins by H2O2. These iron porphyrin complexes did not yield cyclohexene oxide in the epoxidation of cyclohexene by H2O2 in the absence of 5-Cl-1-MeIm in aprotic solvent; however, addition of 5-Cl-1-MeIm to the reaction solutions gave high yields of cyclohexene oxide with the formation of trace amounts of allylic oxidation products. We proposed, on the basis of the results of mechanistic studies, that the role of the imidazole is to decelerate the O–O bond cleavage of an iron(III) hydroperoxide porphyrin (or H2O2–iron(III) porphyrin adduct) and that the intermediate transfers its oxygen to olefins prior to the O–O bond cleavage.  相似文献   

20.
Molecular recognition by microbial receptors for siderophores [natural iron(III) carriers] is examined with synthetic iron(III) carriers as structural probes. The iron(III) carriers have been designed to reproduce the two essential features of the natural siderophores: the capability to form octahedral iron(III) binding cavities and to fit specific membrane receptors. Specifically, analogs of tripodal ferrichrome and linear ferrioxamines have been prepared and examined. The ferrichrome analogs rely on C3-symmetric binders that are assembled from triscarboxylates as anchors, amino acids as bridges, and terminal hydroxamate groups as binding sites. The ferrioxamine analogs are based on linear assemblies of three identical monomers, each derived from a chiral amino acid. The deliberate use of animo acid residues as variable building blocks enables us to systematically modify the molecules' envelopes and the preferred absolute configuration of the iron(III) complexes until optimal performance is reached. Examination of the synthetic analogs in Pseudomonas putida demonstrates that the domains around the iron(III) center and their chiral sense dictate the extent of recognition by the membrane receptors. It is also shown that the synthetic siderophore analogs may be designed to either exert a broader, or a more narrow range of microbial activity than the natural siderophores. The implications of these findings are discussed in relation to the possible design of species-specific antimicrobial agents. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号