首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To study the biochemical properties of single-stranded DNA-binding (SSB) protein from Deinococcus geothermalis (DgeSSB), we have cloned the ssb gene obtained by PCR and developed an overexpression system. The gene consists of an open reading frame of 900 nucleotides encoding a protein of 300 amino acids with a calculated molecular weight of 32.45 kDa. The amino acid sequence exhibits 43, 44 and 75% identity with Thermus aquaticus, Thermus thermophilus and Deinococcus radiodurans SSBs, respectively. We show that DgeSSB is similar to Thermus/Deinococcus SSB in its biochemical properties. DgeSSB includes two oligonucleotide/oligosaccharide-binding folds per monomer and functions as a homodimer. In fluorescence titrations with poly(dT), DgeSSB bound about 30 nt independent of the salt concentration, and the fluorescence was quenched by about 65%. In a complementation assay in Escherichia coli, DgeSSB took over the in vivo function of EcoSSB. DgeSSB is thermostable with half-lives of 50 min at 70°C and 5 min at 90°C. Hence, DgeSSB offers an attractive alternative for TaqSSB and TthSSB in their applications for molecular biology methods and for analytical purposes.  相似文献   

2.
Displacement of single-stranded DNA (ssDNA)-binding protein (SSB) from ssDNA is necessary for filament formation of RecA on ssDNA to initiate homologous recombination. The interaction between RecO and SSB is considered to be important for SSB displacement; however, the interaction has not been characterized at the atomic level. In this study, to clarify the mechanism underlying SSB displacement from ssDNA upon RecO binding, we examined the interaction between Thermus thermophilus RecO and cognate SSB by NMR analysis. We found that SSB interacts with the C-terminal positively charged region of RecO. Based on this result, we constructed some RecO mutants. The R127A mutant had considerably decreased binding affinity for SSB and could not anneal SSB-coated ssDNAs. Further, the mutant in the RecOR complex prevented the recovery of ssDNA-dependent ATPase activity of RecA from inhibition by SSB. These results indicated that the region surrounding Arg-127 is the binding site of SSB. We also performed NMR analysis using the C-terminal peptide of SSB and found that the acidic region of SSB is involved in the interaction with RecO, as seen in other protein-SSB interactions. Taken together with the findings of previous studies, we propose a model for SSB displacement from ssDNA where the acidic C-terminal region of SSB weakens the ssDNA binding affinity of SSB when the dynamics of the C-terminal region are suppressed by interactions with other proteins, including RecO.  相似文献   

3.
DNA in living cells is generally processed via the generation and the protection of single-stranded DNA involving the binding of ssDNA-binding proteins (SSBs). The studies of SSB-binding mode transition and cooperativity are therefore critical to many cellular processes like DNA repair and replication. However, only a few atomic force microscopy (AFM) investigations of ssDNA nucleoprotein filaments have been conducted so far. The point is that adsorption of ssDN A-SSB complexes on mica, necessary for AFM imaging, is not an easy task. Here, we addressed this issue by using spermidine as a binding agent. This trivalent cation induces a stronger adsorption on mica than divalent cations, which are commonly used by AFM users but are ineffective in the adsorption of ssDNA-SSB complexes. At low spermidine concentration (<0.3 mM), we obtained AFM images of ssDNA-SSB complexes (E. coli SSB, gp32 and yRPA) on mica at both low and high ionic strengths. In addition, partially or fully saturated nucleoprotein filaments were studied at various monovalent salt concentrations thus allowing the observation of SSB-binding mode transition. In association with conventional biochemical techniques, this work should make it possible to study the dynamics of DNA processes involving DNA-SSB complexes as intermediates by AFM.  相似文献   

4.
DNA in living cells is generally processed via the generation and the protection of single-stranded DNA involving the binding of ssDNA-binding proteins (SSBs). The studies of SSB-binding mode transition and cooperativity are therefore critical to many cellular processes like DNA repair and replication. However, only a few atomic force microscopy (AFM) investigations of ssDNA nucleoprotein filaments have been conducted so far. The point is that adsorption of ssDN A–SSB complexes on mica, necessary for AFM imaging, is not an easy task. Here, we addressed this issue by using spermidine as a binding agent. This trivalent cation induces a stronger adsorption on mica than divalent cations, which are commonly used by AFM users but are ineffective in the adsorption of ssDNA–SSB complexes. At low spermidine concentration (<0.3mM), we obtained AFM images of ssDNA–SSB complexes (E. coli SSB, gp32 and yRPA) on mica at both low and high ionic strengths. In addition, partially or fully saturated nucleoprotein filaments were studied at various monovalent salt concentrations thus allowing the observation of SSB-binding mode transition. In association with conventional biochemical techniques, this work should make it possible to study the dynamics of DNA processes involving DNA–SSB complexes as intermediates by AFM.  相似文献   

5.
6.
The ATP-dependent three-strand exchange activity of the Streptococcus pneumoniae RecA protein (RecA(Sp)), like that of the Escherichia coli RecA protein (RecA(Ec)), is strongly stimulated by the single-stranded DNA-binding protein (SSB) from either E. coli (SSB(Ec)) or S. pneumoniae (SSB(Sp)). The RecA(Sp) protein differs from the RecA(Ec) protein, however, in that its ssDNA-dependent ATP hydrolysis activity is completely inhibited by SSB(Ec) or SSB(Sp) protein, apparently because these proteins displace RecA(Sp) protein from ssDNA. These results indicate that in contrast to the mechanism that has been established for the RecA(Ec) protein, SSB protein does not stimulate the RecA(Sp) protein-promoted strand exchange reaction by facilitating the formation of a presynaptic complex between the RecA(Sp) protein and the ssDNA substrate. In addition to acting presynaptically, however, it has been proposed that SSB(Ec) protein also stimulates the RecA(Ec) protein strand exchange reaction postsynaptically, by binding to the displaced single strand that is generated when the ssDNA substrate invades the homologous linear dsDNA. In the RecA(Sp) protein-promoted reaction, the stimulatory effect of SSB protein may be due entirely to this postsynaptic mechanism. The competing displacement of RecA(Sp) protein from the ssDNA substrate by SSB protein, however, appears to limit the efficiency of the strand exchange reaction (especially at high SSB protein concentrations or when SSB protein is added to the ssDNA before RecA(Sp) protein) relative to that observed under the same conditions with the RecA(Ec) protein.  相似文献   

7.
The stability and deletion-size-distribution profiles of leading strand (CAG)75 and (CTG)137 trinucleotide repeat arrays inserted in the Escherichia coli chromosome were investigated upon overexpression of the single-stranded DNA-binding protein (SSB) and in mutant strains deficient for the SbcCD (Rad51/Mre11) nuclease. SSB overexpression increases the stability of the (CAG)75 repeat array and leads to a loss of the bias towards large deletions for the same array. Furthermore, the absence of SbcCD leads to a reduction in the number of large deletions in strains containing the (CTG)137 repeat array.  相似文献   

8.
A vector for site-directed mutagenesis and overproduction of the Escherichia coli single-stranded-DNA-binding protein (E. coli SSB) was constructed. An E. coli strain carrying this vector produces up to 400 mg pure protein from 25 g wet cells. The vector was used to mutate specifically the Phe60 residue of E. coli SSB. Phe60 had been proposed to be located near the single-stranded-DNA-binding site. Substitution of the Phe60 residue by Val, Ser, Leu, His, Tyr and Trp gave proteins with no or only minor conformational changes, as detected by NMR spectroscopy. The affinity of the mutant E. coli SSB proteins for single-stranded DNA decreased in the order Trp greater than Phe (wild-type) greater than Tyr greater than Leu greater than His greater than Val greater than Ser, leading to the conclusion that position 60 is a site of hydrophobic interaction of the protein with DNA.  相似文献   

9.
Faithful DNA replication is one of the most essential processes in almost all living organisms. However, the proteins responsible for organellar DNA replication are still largely unknown in plants. Here, we show that the two mitochondrion-targeted single-stranded DNA-binding (SSB) proteins SSB1 and SSB2 directly interact with each other and act as key factors for mitochondrial DNA (mtDNA) maintenance, as their single or double loss-of-function mutants exhibit severe germination delay and growth retardation. The mtDNA levels in mutants lacking SSB1 and/or SSB2 function were two- to four-fold higher than in the wild-type (WT), revealing a negative role for SSB1/2 in regulating mtDNA replication. Genetic analysis indicated that SSB1 functions upstream of mitochondrial DNA POLYMERASE IA (POLIA) or POLIB in mtDNA replication, as mutation in either gene restored the high mtDNA copy number of the ssb1-1 mutant back to WT levels. In addition, SSB1 and SSB2 also participate in mitochondrial genome maintenance by influencing mtDNA homologous recombination (HR). Additional genetic analysis suggested that SSB1 functions upstream of ORGANELLAR SINGLE-STRANDED DNA-BINDING PROTEIN1 (OSB1) during mtDNA replication, while SSB1 may act downstream of OSB1 and MUTS HOMOLOG1 for mtDNA HR. Overall, our results yield new insights into the roles of the plant mitochondrion-targeted SSB proteins and OSB1 in maintaining mtDNA stability via affecting DNA replication and DNA HR.  相似文献   

10.
In contrast to the majority of tetrameric SSB proteins, the recently discovered SSB proteins from the Thermus/Deinoccus group form dimers. We solved the crystal structures of the SSB protein from Thermus aquaticus (TaqSSB) and a deletion mutant of the protein and show the structure of their ssDNA binding domains to be similar to the structure of tetrameric SSBs. Two conformations accompanied by proline cistrans isomerization are observed in the flexible C-terminal region. For the first time, we were able to trace 6 out of 10 amino acids at the C-terminus of an SSB protein. This highly conserved region is essential for interaction with other proteins and we show it to adopt an extended conformation devoid of secondary structure. A model for binding this region to the χ subunit of DNA polymerase III is proposed. It explains at a molecular level the reason for the ssb113 phenotype observed in Escherichia coli.  相似文献   

11.
The single-stranded DNA (ssDNA)-binding protein from the radiation-resistant bacterium Deinococcus radiodurans (DrSSB) functions as a homodimer in which each monomer contains two oligonucleotide-binding (OB) domains. This arrangement is exceedingly rare among bacterial SSBs, which typically form homotetramers of single-OB domain subunits. To better understand how this unusual structure influences the DNA binding and biological functions of DrSSB in D. radiodurans radiation resistance, we have examined the structure of DrSSB in complex with ssDNA and the DNA damage-dependent cellular dynamics of DrSSB. The x-ray crystal structure of the DrSSB-ssDNA complex shows that ssDNA binds to surfaces of DrSSB that are analogous to those mapped in homotetrameric SSBs, although there are distinct contacts in DrSSB that mediate species-specific ssDNA binding. Observations by electron microscopy reveal two salt-dependent ssDNA-binding modes for DrSSB that strongly resemble those of the homotetrameric Escherichia coli SSB, further supporting a shared overall DNA binding mechanism between the two classes of bacterial SSBs. In vivo, DrSSB levels are heavily induced following exposure to ionizing radiation. This accumulation is accompanied by dramatic time-dependent DrSSB cellular dynamics in which a single nucleoid-centric focus of DrSSB is observed within 1 h of irradiation but is dispersed by 3 h after irradiation. These kinetics parallel those of D. radiodurans postirradiation genome reconstitution, suggesting that DrSSB dynamics could play important organizational roles in DNA repair.  相似文献   

12.
The regions of single-stranded (ss) DNA that result from DNA damage are immediately coated by the ssDNA-binding protein (SSB). RecF pathway proteins facilitate the displacement of SSB from ssDNA, allowing the RecA protein to form protein filaments on the ssDNA region, which facilitates the process of recombinational DNA repair. In this study, we examined the mechanism of SSB displacement from ssDNA using purified Thermus thermophilus RecF pathway proteins. To date, RecO and RecR are thought to act as the RecOR complex. However, our results indicate that RecO and RecR have distinct functions. We found that RecR binds both RecF and RecO, and that RecO binds RecR, SSB and ssDNA. The electron microscopic studies indicated that SSB is displaced from ssDNA by RecO. In addition, pull-down assays indicated that the displaced SSB still remains indirectly attached to ssDNA through its interaction with RecO in the RecO-ssDNA complex. In the presence of both SSB and RecO, the ssDNA-dependent ATPase activity of RecA was inhibited, but was restored by the addition of RecR. Interestingly, the interaction of RecR with RecO affected the ssDNA-binding properties of RecO. These results suggest a model of SSB displacement from the ssDNA by RecF pathway proteins.  相似文献   

13.
Based on electron microscopy and NMR spectroscopy it is deduced that Eco SSB binds with moderate cooperativity to polynucleotides. Evidence is provided that the protein binds in its tetrameric form to the nucleic acid forming a nucleosome-like structure. NMR-spectroscopic analysis of the complexes shows that the carboxy-terminal region of the Eco SSB maintains a high flexibility even when the protein is immobilized in large protein-protein clusters.  相似文献   

14.
D H Tsao  A H Maki  J W Chase 《FEBS letters》1990,261(2):389-391
The complexes of point-mutated Escherichia coli single-stranded DNA-binding protein (Eco SSB) with poly-(2-thiouridylic acid) (poly S2U) have been studied by optical detection of magnetic resonance spectroscopy (ODMR). Previous work has determined that two of four tryptophan (Trp) residues in Eco SSB undergo stacking interactions with nucleic acid bases. Selective photoexcitation of S2U bases was performed and subsequent triplet----triplet energy transfer from S2U to nearby Trp residues in the protein took place. The zero-field splitting (ZFS) parameters and sublevel kinetics were determined for each Trp residue sensitized by S2U. The sublevel lifetimes of the two sensitized residues are similar to those of normal Trp. The ZFS parameters, on the other hand, show a dramatic reduction relative to those of the uncomplexed protein, implying a more polarizable environment for the sensitized Trp residues and/or charge transfer interactions with the S2U bases.  相似文献   

15.
Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.  相似文献   

16.
17.
Single-stranded DNA binding protein is a key component in growth of bacteriophage T7. In addition, DNA synthesis by the purified in vitro replication system is markedly stimulated when the DNA template is coated with Escherichia coli single-stranded DNA binding protein (SSB). In an attempt to understand the mechanism for this stimulation, we have studied the effect of E. coli SSB on DNA synthesis by the T7 DNA polymerase using a primed single-stranded M13 DNA template which serves as a model for T7 lagging strand DNA synthesis. Polyacrylamide gel analysis of the DNA product synthesized on this template in the absence of SSB indicated that the T7 DNA polymerase pauses at many specific sites, some stronger than others. By comparing the position of pausing with the DNA sequence of this region and by using a DNA template that contains an extremely stable hairpin structure, it was found that many, but not all, of these pause positions correspond to regions of potential secondary structure. The presence of SSB during synthesis resulted in a large reduction in the frequency of hesitations at many sites that correspond to these secondary structures. However, the facts that a large percentage of the pause sites remain unaffected even at saturating levels of SSB and that SSB stimulates synthesis on a singly primed poly(dA) template suggested that other mechanisms also contribute to the stimulation of DNA synthesis caused by SSB. Using a sucrose gradient analysis, we found that SSB increases the affinity of the polymerase for single-stranded DNA that this increased binding is only noticed when the polymerase concentration is limiting. The effect of this difference in polymerase affinity was clearly observed by a polyacrylamide gel analysis of the product DNA synthesized during a limited DNA synthesis reaction using conditions where only two nucleotides are added to the primer. Under these circumstances, where the presence of hairpin structures should not contribute to the stimulatory effect of SSB, we found that the extension of the primer is stimulated 4-fold if the DNA template is coated with SSB. Furthermore, SSB had no effect on this synthesis at large polymerase to template ratios.  相似文献   

18.
The herpes virus-encoded DNA replication protein, infected cell protein 8 (ICP8), binds specifically to single-stranded DNA with a stoichiometry of one ICP8 molecule/12 nucleotides. In the absence of single-stranded DNA, it assembles into long filamentous structures. Binding of ICP8 inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed single-stranded DNA circles. In contrast, ICP8 greatly stimulates replication of circular duplex DNA by the polymerase. Stimulation occurs only in the presence of a nuclear extract from herpes-infected cells. Appearance of the stimulatory activity in nuclear extracts coincides closely with the time of appearance of herpes-induced DNA replication proteins including ICP8 and DNA polymerase. A viral factor(s) may therefore be required to mediate ICP8 function in DNA replication.  相似文献   

19.
We have identified and characterized protein factors from mung bean (Vigna radiata) nuclear extracts that specifically bind the single-stranded G-rich telomeric DNA repeats. Nuclear extracts were prepared from three different types of plant tissue, radicle, hypocotyl, and root, in order to examine changes in the expression patterns of telomere-binding proteins during the development of mung bean. At least three types of specific complexes (A, B, and C) were detected by gel retardation assays with synthetic telomere and nuclear extract from radicle tissue, whereas the two major faster-migrating complexes (A and B) were formed with nuclear extracts from hypocotyl and root tissues. Gel retardation assays also revealed differences in relative amount of each complex forming activity in radicle, hypocotyl, and root nuclear extracts. These data suggest that the expression of telomere-binding proteins is developmentally regulated in plants, and that the factor involved in the formation of complex C may be required during the early stages of development. The binding factors have properties of proteins and are hence designated as mung bean G-rich telomere-binding proteins (MGBP). MGBPs bind DNA substrates with three or more single-stranded TTTAGGG repeats, while none of them show binding affinity to either double-stranded or single-stranded C-rich telomeric DNA. These proteins have a lower affinity to human telomeric sequences than to plant telomeric sequences and do not exhibit a significant binding activity to Tetrahymena telomeric sequence or mutated plant telomeric sequences, indicating that their binding activities are specific to plant telomere. Furthermore, RNase treatment of the nuclear extracts did not affect the complex formation activities. This result indicates that the single-stranded telomere-binding activities may be attributed to a simple protein but not a ribonucleoprotein. The ability of MGBPs to bind specifically the single-stranded TTTAGGG repeats may suggest their in vivo functions in the chromosome ends of plants.  相似文献   

20.
The mitochondrial genome in a number of organisms is represented by linear DNA molecules with defined terminal structures. The telomeres of linear mitochondrial DNA (mtDNA) of yeast Candida parapsilosis consist of tandem arrays of large repetitive units possessing single-stranded 5' extension of about 110 nucleotides. Recently we identified the first mitochondrial telomere-binding protein (mtTBP) that specifically binds a sequence derived from the extreme end of C. parapsilosis linear mtDNA and protects it from attack by various DNA-modifying enzymes (Tomáska, L'., Nosek, J., and Fukuhara, H. (1997) J. Biol. Chem. 272, 3049-3059). Here we report the isolation of MTP1, the gene encoding mtTBP of C. parapsilosis. Sequence analysis revealed that mtTBP shares homology with several bacterial and mitochondrial single-stranded DNA-binding proteins that nonspecifically bind to single-stranded DNA with high affinity. Recombinant mtTBP displays a preference for the telomeric 5' overhang of C. parapsilosis mtDNA. The heterologous expression of a mtTBP-GFP fusion protein resulted in its localization to the mitochondria but was unable to functionally substitute for the loss of the S. cerevisiae homologue Rimlp. Analysis of the MTP1 gene and its translation product mtTBP may provide an insight into the evolutionary origin of linear mitochondrial genomes and the role it plays in their replication and maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号