首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Drosophila clock proteins timekeeper (CK2αTik) and andante (CK2βAnd) are mutated CK2α and CK2β subunits, respectively.In order to revisit the hypothesis concerning a perturbation of the β/β and/or α/β subunit association, involving the andante mutant we have cloned, expressed and purified the recombinant andante mutant CK2βAnd and a CK2 holoenzyme composed of CK2βAnd and the wildtype CK2α subunit. Biochemical analyses using gel filtration analysis, inhibitor and heat treatment, as well as urea denaturation studies did not yield significant differences between the wildtype holoenzyme (α2β2) and a holoenzyme containing wildtype CK2α and andante CK2βAnd.The timekeeper mutant, CK2αTik has been reported to show a significant reduction in enzyme activity. In order to closely investigate the reason for this reduction in activity, we have also cloned and expressed the human homologue of Drosophila timekeeper. Using a CK2 holoenzyme containing the human timekeeper mutant and the wildtype CK2β subunit we could confirm a strongly reduced activity towards CK2 substrates, but also a significant reduction in the autophosphorylation of the CK2β in the absence of any substrate. Based on a structure-based model we postulate that the mutation M161K in Drosophila (i.e. M163K in human) is responsible for the drastic loss of activity, where the lysine residue may cause improper binding of the tri-nucleotide.  相似文献   

2.
The growth, biochemical composition and fatty acid profiles of six Antarctic microalgae cultured at different temperatures, ranging from 4, 6, 9, 14, 20 to 30 C, were compared. The algae were isolated from seawater, freshwater, soil and snow samples collected during our recent expeditions to Casey, Antarctica, and are currently deposited in the University of Malaya Algae Culture Collection (UMACC). The algae chosen for the study were Chlamydomonas UMACC 229, Chlorella UMACC 234, Chlorella UMACC 237, Klebsormidium UMACC 227, Navicula UMACC 231 and Stichococcus UMACC 238. All the isolates could grow at temperatures up to 20 C; three isolates, namely Navicula UMACC 231 and the two Chlorella isolates (UMACC 234 and UMACC 237) grew even at 30 C. Both Chlorella UMACC 234 and Stichococcus UMACC 238 had broad optimal temperatures for growth, ranging from 6 to 20 C (μ = 0.19 – 0.22 day–1) and 4 to 14 C (μ = 0.13 – 0.16 day–1), respectively. In contrast, optimal growth temperatures for NaviculaUMACC 231 and Chlamydomonas UMACC 229 were 4 C (μ = 0.34 day–1) and 6–9 C (μ = 0.39 – 0.40 day–1), respectively. The protein content of the Antarctic algae was markedly affected by culture temperature. All except Navicula UMACC 231 and Stichococcus UMACC 238 contained higher amount of proteins when grown at low temperatures (6–9 C). The percentage of PUFA, especially 20:5 in Navicula UMACC 231 decreased with increasing culture temperature. However, the percentages of unsaturated fatty acids did not show consistent trend with culture temperature for the other algae studied.  相似文献   

3.
Knocking out the regulatory β subunit of protein kinase CK2 in mice leads to early embryonic lethality. Heterozygous CK2β (CK2β+/−) knockout mice do not show an obvious phenotype. However, the number of heterozygous offsprings from CK2β+/− inter-crossings is lower than expected, meaning that some heterozygous embryos do not survive. Interestingly, CK2β+/− ES (Embryonic Stem) cells express a considerably lower level of CK2β than wild-type ES cells, whereas the level of CK2β in organs from heterozygous adult mice does not significantly differ from those of wild-type mice. The data suggest a compensatory mechanism that adjusts CK2β levels during development in the majority of, but not in all, cases (Mol Cell Biol {23:} 908–915, 2003).In order to find an explanation for the gene dosage effect observed for heterozygous offsprings, we analysed embryos at mid-gestation (E10.5) as well as wild-type and CK2β+/− ES cells for differences in growth rate and response to different stress agents. Analysis of E10.5 embryos generated from heterozygous matings revealed about 20% of smaller retarded CK2β+/− embryos. No correlation between CK2β levels in normal looking and retarded CK2β+/− embryos were found. However, a different post-translational form of CK2β protein has been detected in these retarded embryos. Cellular parameters such as growth rate and G1-, G2-checkpoints in ES cells were identical in both wild-type and CK2β+/− cells. When ES cells were injected to induce differentiated teratocarcinoma in syngenic mice, the size of the tumours correlated with the level of CK2β.  相似文献   

4.
G proteins are heterotrimeric GTPases that play a key role in signal transduction. The α subunit of Gs bound to GTP is capable of activating adenylyl cyclase. The amino acid sequences derived from two X. laevis cDNA clones that apparently code for Gsα subunits are 92% identical to those found in the short form of human Gsα. Despite this high homology, the X. laevis Gsα clones expressed in vitro, yielded a protein that are not able to activate the adenylyl cyclase present in S49 cyc membranes in contrast with human Gsα similarly expressed. This finding suggested that the few amino acid substitutions found in the amphibian subunit are important in defining the functionality of the human Gsα. The construction of chimeras composed of different fractions of the cDNAs of the two species was adopted as an approach in determining the regions of the molecule important in its functionality in this assay. Four pairs of chimeras were constructed using reciprocal combinations of the cDNAs coding for human and Xenopus Gsα. These eight constructs were expressed in vitro and equivalent amounts of the resulting proteins were assayed in the activation of adenylyl cyclase with GTPγs and isoproterenol. The results obtained here clearly indicate that the Gα sequence that extends from amino acid 70 to 140, is important for the functionality of human Gsα in activating adenylyl cyclase.  相似文献   

5.
To investigate the production potential of eicosapentaenoic acid (EPA) by the diatom Nitzschia laevis, the growth characteristics and fatty acid composition of the cells were studied under photoautotrophic, mixotrophic and heterotrophic conditions of growth. The specific growth rate and maximum biomass concentration were respectively 0.466 d–1 and 2.27 g l–1 for mixotrophic culture, 0.344 d–1 and 2.04 g l–1 for heterotrophic culture, and 0.167 d–1 and 0.5 g l–1 for photoautotrophic culture, respectively. As for EPA production, the yield and productivity were respectively 52.32 mg l–1 and 10.46 mg l–1 d for mixotrophic culture, 35.08 mg l–1 and 6.37 mg l–1 d for heterotrophic culture, and 6.78 mg l–1 and 3.39 mg l–1 d for photoautotrophic culture, respectively. Results suggest that mixotrophic culture is the most suitable growth mode for the production of EPA by the diatom Nitzschia laevis. The results are useful for the development of a cost-effective fermentation process for EPA production by Nitzschia laevis.  相似文献   

6.
A study of the fatty acid composition was made for 35 Arthrospira strains, concentrating on the most abundant fatty acids, the two polyunsaturated C18 acids, linoleic and γ-linolenic acid, and palmitic acid. When grown at 30 C and low irradiance (10 μmol photon m−2 s−1), these three acids together formed 88–92% of total fatty acids. There were considerable differences in the composition of the two polyunsaturated acids. Depending on the strain, linoleic acid formed 13.1–31.5% and γ-linolenic acid formed 12.9–29.4% total fatty acids. In contrast, the range for palmitic acid was narrow: 42.3–47.6% of total fatty acids. Repeat experiments on several strains under defined conditions led to closely similar results for any particular environment, suggesting that fatty acid composition can be used as an aid in differentiating between strains. Five additional strains, which had apparently originated from the same original stock cultures as 3 of the 35 in the main study, but from different culture collections, were also assayed. With four strains the results were similar, irrespective of culture source, but with one strain marked differences occurred, especially in the polyunsaturated C18 fatty acid fraction. These differences were independent of the age of the culture. In addition, straight morphotypes derived during repeat subcultures of four strains; each showed a similar fatty acid composition to that of the helical morphotypes of the same strains. A decrease in temperature from 30 to 20 C, an increase in irradiance (at 30 C) from 10 to 70 μmol photon m−2 s−1 and transfer to dark heterotrophy all favoured an increase in polyunsaturated C18 fatty acids. The highest γ-linolenic acid content of any conditions was found for three strains grown heterotrophically on glucose in the dark at 30 C. A comparative study of six strains of Spirulina confirmed a previous study showing the absence of γ-linolenic acid in all Spirulina strains, thus permitting the separation of these two genera.  相似文献   

7.
The Xenopus laevis XTC cell line has been analyzed for the production of polypeptide growth factors and mesoderm-inducing activity. By the use of specific biological assays, it is shown that XTC cells produce a growth factor functionally related to the platelet-derived growth factor (PDGF) and two transforming growth factor (TGF)β-like activities. Mesoderm-inducing activity, as measured on X. laevis ectodermal explants from stage 10 embryos, was found to coelute on a Bio-Gel P-100 column with one of the TGFβ-like activities at an apparent molecular weight of 6–10 kDa. Analysis of the DNA content from XTC cells by flow cytometry demonstrated that the cell line is heterogeneous and consists of both tetraploid and diploid cells. Cloning of the XTC cells and selecting single-cell colonies on the basis of their ability to grow in soft agar resulted in the isolation of several homogeneous, morphologically different clonal derivatives. Analysis of conditioned medium from these clonal derivatives showed that only one of them, the only diploid line among six investigated, produced a strong heat- and acid-stable mesoderm-inducing activity that induced notochord and muscle formation in stage 10 X. laevis ectodermal expiants. The relation between this activity and a recently described TGFβ-like mesoderm-inducing factor obtained from XTC-conditioned medium will be discussed. In conclusion, a clonal cell line derived from X. laevis XTC cells which provides a good source for further characterization of mesoderm-inducing factors has been established.  相似文献   

8.
9.
Casein kinase II is thought to play an essential role in the control of cell division and differentiation in all eukaryotes. Through complementation of a defective casein kinase II catalytic subunit gene from Saccharomyces cerevisiae, we isolated an Arabidopsis thaliana casein kinase II regulatory subunit homologue, CKB1. A second regulatory subunit was identified by low-stringency hybridization with CKB1.Casein kinase II from S. cerevisiae is composed of two catalytic () and two regulatory () subunits. Simultaneous disruption of the genes for the and subunits, CKA1 and CKA2, respectively, is lethal. Strain YDH8 has disruptions of CKA1 and CKA2; its viability depends on a temperature-sensitive allele of CKA2, cka2–8, carried on a centromeric plasmid. We screened an A. thaliana cDNA library, whose inserts are under the control of the galactose-inducible GAL10 promoter, for cDNAs which enabled YDH8 cells to grow at the restrictive temperature. One cDNA, CKB1, was isolated by this screen which had homology to cDNAs of casein kinase II subunits. A second cDNA, CKB2, was isolated by hybridization and was also able to suppress the YDH8 mutant phenotype.The proteins encoded by CKB1 and CKB2 are 80% identical. The carboxy-terminal two thirds of both proteins is ca. 54% identical to the regulatory subunits of casein kinase II from other species. The amino termini are unrelated to any other known proteins. CKB1 and CKB2 lack the conserved autophosphorylation site characteristic of animal subunits, but have potential casein kinase II phosphorylation sites in the same region. Suppression of the cka1 cka2–8 mutant phenotype occurs by interaction of CKB1 with the defective, cka2–8-encoded, catalytic subunit. Cells with disruptions in CKA1 and CKA2 are not rescued by expression of CKB1.  相似文献   

10.
The possible involvement of IAA in the effect thatAzospirillum brasilense has on the elongation and morphology ofPanicum miliaceum roots was examined by comparing in a Petri dish system the effects of inoculation with a wild strain (Cd) with those of an IAA-overproducing mutant (FT-326). Both bacterial strains produced IAA in culture in the absence of tryptophan. At the stationary growth phase, production of IAA by FT-326 wasca. 12 times greater than that of Cd. When inoculation was made with bacterial concentrations higher than, 106 colony forming units ml–1 (CFU ml–1), both strains inhibited root elongation to the same extent. At lower concentrations Cd enhanced elongation, by 15–20%, while FT-326 was ineffective. Both strains promoted root-hair development, and root-hairs were produced nearer the root tip the higher the bacterial concentration (e. g. root elongation region was reduced). Effects of FT-326 on root-hair development were greater than those of Cd. Acidified ether extracts of Cd and FT-326 cultures had inhibitory or promoting effects on root elongation depending on the dilution applied. At low dilutions, extracts from FT-326 were more inhibitory for elongation than those from Cd. At higher dilutions root elongation was promoted, but FT-326 extracts had to be more diluted than those from Cd. Dilutions that promoted root elongation contained supra-optimal concentrations of IAA, 1–3 orders of magnitude higher than those required for optimal enhancement by synthetic IAA. It is suggested that the bacteria produce in culture an IAA-antagonist or growth inhibitor that decreases the effectiveness of IAA action. The large variability reported for the effects ofAzospirillum on root elongation could be the result of the opposite effects on root elongation of IAA and other compounds, produced by the bacteria.  相似文献   

11.
High performance liquid chromatography (HPLC) followed by radioimmunoassay (RIA) of the chromatographic fractions were used to separate and quantify, respectively, the αMSH-like peptides stored in the neurointermediate lobe (NIL) of the Xenopus laevis (X. laevis) pituitary gland and released from the X. laevis NIL, in vitro. Immunoreactive (IR) material eluting with a similar HPLC retention time as desacetyl αMSH was the major IR peptide in the NIL. Material with a retention time similar to αMSH and immunological properties equivalent to αMSH was also present in the NIL. However, the retention times of the X. laevis and mammalian αMSH-like peptides were not identical, suggesting species difference in these peptides. Following incubation of NILs in the presence of [3H]-acetyl CoA, the X. laevis variant of αMSH was the major [3H]-labeled, immunoprecipitable material present. Following an incubation of NILs in the presence of [3H]-amino acids for 21 hours, immunoprecipitable [3H]-αMSH was detected in the NILs and the ratio of [3H]-desacetyl αMSH to [3H]-αMSH was similar to the ratio of IR-desacetyl αMSH to IR-αMSH. The X. laevis variant of αMSH was the major αMSH-like peptide released from the NILs into the incubation medium. Dopamine (50 μM) significantly inhibited the release of IR-αMSH but not IR-desacetyl αMSH. No net increase in total αMSH (sum of release and NIL content) was observed in the actively secreting (control) NIL group versus the dopaminetreated group. These results indicate that acetylation of desacetyl αMSH occurs intracellularly.  相似文献   

12.
Summary The recently described species Macrocystis laevis Hay is endemic to the Prince Edward Islands. Aerial photographs of Marion Island were used to outline the distribution of the kelp and to assess its cover. M. laevis occurs along the lee shore of the island, between the 5 and 20 m isobaths. Plant densities and gross plant morphology were measured by divers during April/May 1988. Net production was estimated from growth measurements taken in April/May 1988 and 1989 and again during August 1989. The mean biomass of kelp was 0.67 kgC·m–2 within the kelp beds. Net production was estimated at 7.7 gC·m–2·d–1 and 11.5 gC·m–2d–1 during the months of April and August respectively. M. laevis had a uniform frond-length frequency distribution, which suggests that only the oldest fronds are lost by wave action or senescence. Based on calculations for M. laevis and Durvillaea antarctica (the two species making up most of the macrophyte biomass) macrophytes are more productive per unit area than the phytoplankton but contribute less to the seas around the Prince Edward Islands by virtue of their small spatial coverage. Neither of the kelps lose much material as particulate or dissolved organic carbon through fragmentation. The extent of grazing on live M. laevis fronds is unknown, and only D. antarctica contributes to a macrofaunal detrital community. The contribution of M. laevis production to the nearshore ecology of the islands seems limited, as we suspect that almost all of its production is exported to the open ocean pelagic system.  相似文献   

13.

Key message

Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis.

Abstract

Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two β subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.
  相似文献   

14.
Photosynthetic responses to irradiance and temperature of “leaves” and receptacles were compared in February (vegetative stage) and May (reproductive stage) in the seaweed, Hizikia fusiforme (Harvey) Okamura (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. Irradiance-saturated photosynthesis (Pmax) was significantly higher in receptacles than in “leaves” on a fresh weight basis, and that of “leaves” was greater in May than in February at ambient seawater temperatures. The optimum temperature for Pmax was 30C for both “leaves” and receptacles, being 5–10C higher than the ambient seawater temperature. The apparent photosynthetic efficiencies were greater in receptacles than in “leaves” within the tested temperature range of 10–40C. The irradiance for saturating photosynthesis for both “leaves” and receptacles was temperature-dependent, with the highest values (about 200μmolphotonsm−2s−1) at 30C.  相似文献   

15.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

16.
We have previously documented that naked antisense CK2α ODN can potently induce apoptosis in cancer cells in culture and in mouse xenograft human prostate cancer. The effects of the antisense CK2α are related to downregulation of CK2α message and rapid loss of the CK2 from the nuclear compartment. Here we demonstrate that downregulation of CK2 elicited by diverse methods leads to inhibition of cell growth and induction of apoptosis. The various approaches to downregulation of CK2 employed were transfection with kinase-inactive plasmid, use of CK2α siRNA, use of inhibitors of CK2 activity, and use of antisense CK2α ODN packaged in sub-50 nm nanocapsules made from tenascin. In all cases, the downregulation of CK2 is associated with loss in cell survival. We have also described preliminary observations on an approach to targeting CK2 in cancer cells. For this, sub-50 nm tenascin-based nanocapsules bearing the antisense CK2α ODN were employed to test that the antisense is delivered to the cancer cells in vivo. The results provide the first preliminary evidence that such an approach may be feasible for targeting CK2 in cancer cells. Together, our results suggest that CK2 is potentially a highly plausible target for cancer therapy.  相似文献   

17.
18.
12-O-Tetradecanoyl phorbol-13-acetate (TPA) inhibits the growth of most malignant melanoma cells but stimulates the growth of normal human melanocytes. We previously showed that addition of TPA inhibits the growth of the human metastatic melanoma cell line, Demel, by blocking cells at both the G1/S and G2/M cell cycle transitions (D. L. Coppocket al.,1992,Cell Growth Differ.3, 485–494). To examine the G2/M transition, we developed a method to synchronize the cells in early S phase using Lovastatin and mevalonate, followed by treatment with hydroxyurea (HU). TPA (30 nM) was effective in blocking cells from entering mitosis and reentering G1 when added up to the end of G2. These cells arrested in G2. Examination of the levels of cyclins A and B1 demonstrated that the levels of these cyclins were not limiting for entrance into M. However, the addition of TPA blocked the increase in p34cdc2/cyclin B1 kinase activity. In cells treated with TPA, most p34cdc2was found in the slowly migrating forms on Western blots, which contained increased levels of phosphotyrosine. In addition, the level of the cyclin-dependent kinase inhibitor p21Cip1/Waf1, but not of p27Kip1, was increased. We examined the expression of protein kinase C (PKC) isoforms in Demel cells using Western blots to understand which types were involved in the G2 arrest. Demel cells expressed the PKC α, βI, βII, δ, ε, ι/λ, ζ, and μ isozymes. PKC η and PKC θ were not detected. Addition of TPA did not completely down regulate any PKC isozymes over a 12-h period in these synchronized cells. PKC α, βI, βII, δ, and ε isozymes were translocated to the membrane fraction from the cytosolic fraction when treated with TPA. PKC δ appeared as a doublet and the addition of TPA shifted a majority to the slower migrating form. The level of PKC μ was constant; however, a slow mobility form was observed in TPA-treated cells. This reduced mobility was at least partially due to phosphorylation. Thus, the arrest of growth in G2 appears to be due to the inhibition of the p34cdc2kinase activity which is associated with the increased expression of p21Cip1/Waf1and increased phosphorylation on tyrosine of p34cdc2. This arrest, in turn, is associated with a shift of PKC isozymes PKC α, PKC βI, PKC βII, PKC δ, PKC ε, and PKC μ to the membrane fraction which is induced by addition of TPA.  相似文献   

19.
The kinetics of the release of chitinolytic activity (endochitinase EC 3.2.1.14, \-N-acetyglucosaminidase EC 3.2.1.30) by a yeast cell wall lytic Arthrobacter species was studied. The organism was cultivated on yeast cell wall, mycelium of Trichoderma reesei, colloidal chitin, N-acetylglucosamine, glucosamine and mixtures with acetate. With the exception of yeast cell wall, these substrates were used as the sole source of carbon and nitrogen. The growth on colloidal chitin (0.5%) proceeded at a maximum specific growth rate (umax) of 0.23 h–1 and yielded 2700 mU1–1 chitinase. Yeast cell wall and mycelium of T. reesei supported more rapid growth (max = 0.30 h–1 and 0.25 h–1 respectively) but yielded reduced chitinase activity (565 mUl–1 and 700 mUl–1). The growth rate on glucosamine (max = 0.24 h–1) was reduced when this was mixed with acetate (max = 0.12 h–1), whereas the enzyme yield was increased from 720 mUl–1 to 960 mUl–1. The same effect on growth rate was observed with glucose and equimolar mixtures of glucose and acetate, indicating a strong impact of the organic acid on carbohydrate transport or metabolism. The growth of adapted cells on N-acetylglucosamine was comparable to that observed on an equimolar mixture of glucosamine and acetate, indicating that N-acetylglucosamine is rapidly hydrolysed by adapted cells.  相似文献   

20.
Tight regulation of Wnt/β-catenin signaling is critical for vertebrate development and tissue maintenance, and deregulation can lead to a host of disease phenotypes, including developmental disorders and cancer. Proteins associated with primary cilia and centrosomes have been demonstrated to negatively regulate canonical Wnt signaling in interphase cells. The plant homeodomain zinc finger protein Jade-1 can act as an E3 ubiquitin ligase-targeting β-catenin for proteasomal degradation and concentrates at the centrosome and ciliary basal body in addition to the nucleus in interphase cells. We demonstrate that the destruction complex component casein kinase 1α (CK1α) phosphorylates Jade-1 at a conserved SLS motif and reduces the ability of Jade-1 to inhibit β-catenin signaling. Consistently, Jade-1 lacking the SLS motif is more effective than wild-type Jade-1 in reducing β-catenin-induced secondary axis formation in Xenopus laevis embryos in vivo. Interestingly, CK1α also phosphorylates β-catenin and the destruction complex component adenomatous polyposis coli at a similar SLS motif to the effect that β-catenin is targeted for degradation. The opposing effect of Jade-1 phosphorylation by CK1α suggests a novel example of the dual functions of CK1α activity to either oppose or promote canonical Wnt signaling in a context-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号