首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of helix I of the 5S rRNA from Escherichia coli has been determined using a nucleolytic digest fragment of the intact molecule. The fragment analyzed, which corresponds to bases (-1)-11 and 108-120 of intact 5S rRNA, contains a G-U pair and has unpaired bases at its termini. Its proton resonances were assigned by two-dimensional NMR methods, and both NOE distance and coupling constant information have been used to calculate structural models for it using the full relaxation matrix algorithm of the molecular dynamics program XPLOR. Helix I has A-type helical geometry, as expected. Its most striking departure from regular helical geometry occurs at its G-U, which stacks on the base pair to the 5' side of its G but not on the base pair to its 3' side. This stacking pattern maximizes interstrand guanine-guanine interactions and explains why the G-U in question fails to give imino proton NOE's to the base pair to 5' side of its G. These results are consistent with the crystal structures that have been obtained for wobble base pairs in tRNAPhe [Mizuno, H., & Sundaralingam, M. (1978) Nucleic Acids Res. 5, 4451-4461] and A-form DNA [Rabbinovich, D., Haran, T., Eisenstein, M., & Shakked, Z. (1988) J. Mol. Biol. 200, 151-161]. The conformations of the terminal residues of helix I, which corresponds to bases (-1)-11 and 108-120 of native 5S RNA, are less well-determined, and their sugar puckers are intermediate between C2' and C3'-endo, on average.  相似文献   

2.
P Zhang  P B Moore 《Biochemistry》1989,28(11):4607-4615
Experiments are described that complete the assignment of the imino proton NMR spectrum of the fragment 1 domain from the 5S RNA of Escherichia coli. Most of the new assignments fall in the helix V-loop E portion of the molecule (bases 70-78 and 98-106), the region most sensitive to the binding of ribosomal protein L25. The spectroscopic data are incompatible with the standard, phylogenetically derived model for 5S RNA, which makes all the base pairs possible in loop E with the sequences aligned in parallel (C70-G106, C71-G105, etc.) [see Delihas et al. (1984) Prog. Nucleic Acid Res. Mol. Biol. 31, 161-190]. Furthermore, the alternative loop E model proposed for spinach chloroplast 5S RNA by Romby et al. [(1988) Biochemistry 27, 4721-4730] does not apply to the closely homologous 5S RNA from E. coli. The 5S RNAs from E. coli and spinach chloroplasts do not have the same secondary structures in solution despite their strong sequence homologies, and neither appears to conform to the standard model for 5S RNA in the loop E region.  相似文献   

3.
D T Gewirth  P B Moore 《Biochemistry》1987,26(18):5657-5665
The imino proton spectra of several mutants of the 5S RNA of Escherichia coli are compared with that of the wild type. Three of the variants discussed are point mutations, and the fourth is a deletion mutant lacking bases 11-69 of the parent sequence, all obtained by site-directed mutagenesis techniques. The spectroscopic effects of mutation are limited in all cases, and the differences between normal and mutant spectra can be used to make or confirm the assignments of resonances. Several new assignments in the 5S spectrum are reported. Spectroscopic differences due to sequence differences permit the products of single genes within the 5S gene family to be distinguished and their fates followed by NMR.  相似文献   

4.
19F nuclear magnetic resonance has been used to study fully active Escherichia coli tRNA1Val in which 5-fluorouracil has replaced more than 90% of all uracil and uracil-derived modified bases. The 19F spectrum of the native tRNA contains resolved resonances for all 14 incorporated 5-fluorouracils. These are spread over a 6 ppm range, from 1.8 to 7.7 ppm downfield of the standard free 5-fluorouracil. The 19F resonances serve as sensitive monitors of tRNA conformation. Removal of magnesium or addition of NaCl produces major, reversible changes in the 19F spectrum. Most affected is the lowest field resonance (peak A) in the spectrum of the native tRNA. This shifts 2-3 ppm upfield as the Mg2+ concentration is lowered or the NaCl concentration is raised. Thermal denaturation of the tRNA results in a collapse of the spectrum to a single broad peak centered at 4.7 ppm. Study of the pH dependence of the 19F spectrum shows that five incorporated fluorouracils with 19F signals in the central, 4-5.5 ppm, region of the spectrum, peaks C, D, E, F, and H, are accessible to titration in the pH 4.5-9 range. All have pKa's close to that of free 5-fluorouridine (ca. 7.5). Evidence for a conformation change in the tRNA at mildly acidic pHs, ca. 5.5, is also presented. Four of the titratable 5-fluorouracil residues, those corresponding to peaks D, E/F, and H in the 19F spectrum of fluorine-labeled tRNAVal1, are essentially completely exposed to solvent as determined by the solvent isotope shift (SIS) on transfer of the tRNA from H2O to 2H2O. These are also the 5-fluorouracils that readily form adducts with bisulfite, a reagent that reacts preferentially with pyrimidines in single-stranded regions. On the basis of these results, resonances D, E, F, and H in the middle of the 19F spectrum are attributed to 5-fluorouracils in non-base-paired (loop) regions of the tRNA. Evidence from the ionic strength dependence of the 19F spectrum and arguments based on other recent studies with fluorinated tRNAs support earlier suggestions [Horowitz, J., Ofengand, J., Daniel, W. E., & Cohn, M. (1977) J. Biol. Chem. 252, 4418-4420] that the resonances at lowest field correspond to tertiary hydrogen-bonded 5-fluorouracils. Consideration of ring-current effects and the preferential perturbation of upfield 19F resonances by the cyclophotoaddition of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen, which is known to react most readily with pyrimidines in double-stranded regions, permits initial assignment of upfield resonances to 5-fluorouracils in helical stems.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Helix 69 in 23S rRNA is a region in the ribosome that participates in a considerable number of RNA-RNA and RNA-protein interactions. Conformational flexibility is essential for such a region to interact and accommodate protein factors at different stages of protein biosynthesis. In this study, pH-dependent structural and stability changes were observed for helix 69 through a variety of spectroscopic techniques, such as circular dichroism spectroscopy, UV melting, and nuclear magnetic resonance spectroscopy. In Escherichia coli 23S rRNA, helix 69 contains pseudouridine residues at positions 1911, 1915, and 1917. The presence of these pseudouridines was found to be essential for the pH-induced conformational changes. Some of the pH-dependent changes appear to be localized to the loop region of helix 69, emphasizing the importance of the highly conserved nature of residues in this region.  相似文献   

6.
The number of base pairs in the denatured “B” form of E. coli 5S RNA has been determined directly from 400 MHz high resolution proton nuclear magnetic resonance spectroscopy. The experimental NMR spectrum from ?11.6 to ?14.5 ppm from a sodium 2,2-dimethyl-2-silapentane sulfonate reference can be simulated by a theoretical spectrum consisting of 33 Lorentzian lines of equal width (corresponding to 33 base pairs) at 26°C. This result is inconsistent with previously proposed secondary structures of 17 and 23 base pairs, but is readily adapted to the Luoma-Marshall cloverleaf secondary structure.  相似文献   

7.
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson–Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5'' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.  相似文献   

8.
The use of 19F nuclear magnetic resonance (n.m.r.) spectroscopy as a probe of anticodon structure has been extended by investigating the effects of tetranucleotide binding to 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 (anticodon FAC). 19F n.m.r. spectra were obtained in the absence and presence of different concentrations of oligonucleotides having the sequence GpUpApX (X = A,G,C,U), which contain the valine codon GpUpA. Structural changes in the tRNA were monitored via the 5-fluorouracil residues located at positions 33 and 34 in the anticodon loop, as well as in all other loops and stems of the molecule. Binding of GpUpApA, which is complementary to the anticodon and the 5'-adjacent FUra 33, shifts two resonances in the 19F spectrum. One, peak H (3.90 p.p.m.), is also shifted by GpUpA and was previously assigned to FUra 34 at the wobble position of the anticodon. The effects of GpUpApA differ from those of GpUpA in that the tetranucleotide induces the downfield shift of a second resonance, peak F (4.5 p.p.m.), in the 19F spectrum of 19F-labeled tRNA(Val)1. Evidence that the codon-containing oligonucleotides bind to the anticodon was obtained from shifts in the methyl proton spectrum of the 6-methyladenosine residue adjacent to the anticodon and from cleavage of the tRNA at the anticodon by RNase H after binding dGpTpApA, a deoxy analog of the ribonucleotide codon. The association constant for the binding of GpUpApA to fluorinated tRNA(Val)1, obtained by Scatchard analysis of the n.m.r. results, is in good agreement with values obtained by other methods. On the basis of these results, we assign peak F in the 19F n.m.r. spectrum of 19F-labeled tRNA(Val)1 to FUra 33. This assignment and the previous assignment of peak H to FUra 34 are supported by the observation that the intensities of peaks F and H in the 19F spectrum of fluorinated tRNA(Val)1 are specifically decreased after partial hydrolysis with nucleass S1 under conditions leading to cleavage in the anticodon loop. The downfield shift of peak F occurs only with adenosine in the 3'-position of the tetranucleotide; binding of GpUpApG, GpUpApC, or GpUpApU results only in the upfield shift of peak H. The possibility is discussed that this base-specific interaction between the 3'-terminal adenosine and the 5-fluorouracil residue at position 33 involves a 5'-stacked conformation of the anticodon loop. Evidence also is presented for a temperature-dependent conformational change in the anticodon loop below the melting temperature of the tRNA.  相似文献   

9.
Ribonucleoprotein fragments are isolated by mild ribonuclease digestion of E. coli 30S ribosomal subunits, and are deproteinized and subjected to a second partial digestion. Base-pairing between the resulting small RNA fragments is investigated using the two-dimensional gel electrophoresis procedure already reported (see Ref. 1). The interactions thus found are incorporated into a secondary structure model covering approximately 80% of the 16S RNA.  相似文献   

10.
11.
Helix (H)27 from Escherichia coli 16S ribosomal (r)RNA is centrally located within the small (30S) ribosomal subunit, immediately adjacent to the decoding center. Bacterial 30S subunit crystal structures depicting Mg(2+) binding sites resolve two magnesium ions within the vicinity of H27: one in the major groove of the G886-U911 wobble pair, and one within the GCAA tetraloop. Binding of such metal cations is generally thought to be crucial for RNA folding and function. To ask how metal ion-RNA interactions in crystals compare with those in solution, we have characterized, using solution NMR spectroscopy, Tb(3+) footprinting and time-resolved fluorescence resonance energy transfer (tr-FRET), location, and modes of metal ion binding in an isolated H27. NMR and Tb(3+) footprinting data indicate that solution secondary structure and Mg(2+) binding are generally consistent with the ribosomal crystal structures. However, our analyses also suggest that H27 is dynamic in solution and that metal ions localize within the narrow major groove formed by the juxtaposition of the loop E motif with the tandem G894-U905 and G895-U904 wobble pairs. In addition, tr-FRET studies provide evidence that Mg(2+) uptake by the H27 construct results in a global lengthening of the helix. We propose that only a subset of H27-metal ion interactions has been captured in the crystal structures of the 30S ribosomal subunit, and that small-scale structural dynamics afforded by solution conditions may contribute to these differences. Our studies thus highlight an example for differences between RNA-metal ion interactions observed in solution and in crystals.  相似文献   

12.
13.
14.
Spano MN  Walter NG 《Biopolymers》2011,95(10):653-668
Helix (H)27 of 16S ribosomal (r)RNA from Escherichia coli was dubbed the "switch helix" when mutagenesis suggested that two alternative base pair registers may have distinct functional roles in the bacterial ribosome. Although more recent genetic analyses suggest that H27 conformational switching is not required for translation, previous solution studies demonstrated that the isolated E. coli H27 can dynamically convert between the 885 and 888 conformations. Here, we have solved the nuclear magnetic resonance solution structure of a locked 888 conformation. NOE and residual dipolar coupling restraints reveal an architecture that markedly differs from that of the 885 conformation found in crystal structures of the bacterial ribosome. In place of the loop E motif that characterizes the 885 conformer and that the 888 conformer cannot adopt, we find evidence for an asymmetrical A-rich internal loop stabilized by stacking interactions among the unpaired A's. Comparison of the isolated H27 888 solution structure with the 885 crystal structure within the context of the ribosome suggests a difference in overall length of H27 that presents one plausible reason for the absence of H27 conformational switching within the sterically confining ribosome.  相似文献   

15.
Structural study of ribosomal 23 S RNA from Escherichia coli.   总被引:7,自引:0,他引:7  
  相似文献   

16.
Summary When cells of Escherichia coli are labeled with 32Pi for long periods of time and the cell content is subjected to electrophoresis in polyacrylamide gels, an RNA band appears which is about 10S in size. This band seems to contain three conformers. After treatment with formamide only a single band appears in this region of the gel, which contains 550 nucleotides as determined from its mobility. The complexity of the fingerprint of this material, after digestion with T1-RNase, is in agreement with the size as determined by the mobility, this confirming that indeed it is a single molecule. Composition of the T1-oligonucleotides was determined by digesting the T1-generated oligonucleotides with pancreatic RNase and T2-RNase. The quantitative and qualitative analysis of these digestions suggests that 10S RNA contains 609 nucleotides. The molecule contains, besides the four regular bases, one copy per molecule of the modified base pseudouridine.10S RNA cannot be processed by cell extracts to tRNA-sized molecules and does not bind significantly to ribosomes, hence it is unlikely to be a tRNA precursor or an mRNA.  相似文献   

17.
Ribosomal proteins from Escherichia coli have been isolated by a mild purification procedure. Their tertiary structure has been explored by two techniques, proton magnetic resonance and limited proteolysis. A number of proteins when subjected to limited proteolysis produce resistant fragments in good yields. In most cases this does not depend on the specificity of the enzyme used. The proteins S15, S16, S17 and L30 are not degraded at all, whereas a few proteins are very susceptible to proteolysis. 1H-NMR experiments show that the majority of the ribosomal proteins have a uniquely folded tertiary structure. This is particularly pronounced in the four proteins mentioned above which resist proteolysis. In general, a good agreement is observed between the degree of proteolytic resistance and the amount of folding indicated by NMR spectroscopy. Similar studies on a few ribosomal proteins purified under denaturing conditions show that, in contrast, these protein preparations are not structurally homogeneous and that they contain a mixture of denatured and renatured molecules. The results are interpreted in terms of a compactly folded tertiary structure for the four proteinase-resistant proteins while the majority of the other proteins appear to have two domains, one compactly folded and resistant to proteinase and the other flexible and susceptible to proteolysis. A few proteins seem to have a completely flexible structure and can therefore be easily degraded.  相似文献   

18.
The structure of 5 S RNA within the 70 S ribosome from Escherichia coli was studied using the chemical reagent kethoxal (alpha-keto-beta-ethoxybutyraldehyde) to modify accessible guanosines. The modification pattern of 5 S RNA from free 70 S ribosomes was compared with that of poly(U) programmed ribosomes where tRNA had been bound to both the A- and P-sites. Binding to the ribosomal A-site was achieved enzymatically using the elongation factor Tu and GTP in the presence of deacylated tRNA which blocks the ribosomal P-site. Modified guanosines were identified after partial RNase T1 hydrolysis and separation of the hydrolysis products on sequencing gels. Binding of tRNA to the ribosome leads to a strong protection of 5 S RNA guanosine G-41 and to some degree G-44 from kethoxal modification. The limited RNase T1 hydrolysis pattern provides evidence for the existence of a 5 S RNA conformation different from the known 5 S RNA A- and B-forms which are characterized by their gel electrophoretic mobility. The importance of 5 S RNA for the binding of tRNA to the ribosome is discussed.  相似文献   

19.
20.
31P NMR studies were undertaken to determine how potassium ion increases the cofactor affinity of Escherichia coli D-serine dehydratase, a model pyridoxal 5'-phosphate requiring enzyme that converts the growth inhibitor D-serine to pyruvate and ammonia. Potassium ion was shown to promote the appearance of a second upfield shifted cofactor 31P resonance at 4.0 ppm (pH 7.8, 25 degrees C), that increased in area at the expense of the resonance at 4.4 ppm observed in the absence of K+. Na+ antagonized the K+ promoted appearance of the second resonance. These observations suggest that K+ and Na+ stabilize conformational states that differ with respect to O-P-O bond angle, conformation, and/or hydrogen bonding of the phosphate group. An analysis of the dependence of the relative intensities of the two resonances on the K+ concentration yielded a value of ca. 10 mM for the equilibrium constant for dissociation of K+ from D-serine dehydratase. The chemical shift difference between the two resonances indicated that the K+-stabilized and Na+-stabilized forms of the enzyme interconvert at a frequency less than 16 s-1 at pH 7.8, 25 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号