首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FPF1 modulates the competence to flowering in Arabidopsis   总被引:6,自引:0,他引:6  
During the transition to flowing the FPF1 gene is expressed in the peripheral zone of apical meristems and in floral meristems of Arabidopsis. Constitutive expression of FPF1 causes early flowering in Arabidopsis under both long-day and short-day conditions and leads to a shortened juvenile phase as measured by the trichome distribution on the abaxial leaf surface. In the classical late flowering mutants, overexpression of FPF1 compensates partially for the late flowering phenotype, indicating that FPF1 acts downstream or in a parallel pathway to the mutated genes. The co-overexpression of 35S::AP1 with 35S::FPF1 leads to a synergistic effect on the shortening of the time to flowering under short-day conditions. The co-overexpression of 35S::FPF1 and 35S::LFY, however, shows only an additive reduction of flowering time and the conversion of nearly every shoot meristem, except the inflorescence meristem, to a floral meristem under the same light conditions. In addition, the constitutive expression of FPF1 attenuates the severe lfy-1 phenotype under short days and phenocopies to a great extent the lfy-1 mutant grown under long-day conditions. Thus, we assume that FPF1 modulates the competence to flowering of apical meristems.  相似文献   

2.
A MADS domain gene involved in the transition to flowering in Arabidopsis   总被引:20,自引:0,他引:20  
Flowering time in many plants is triggered by environmental factors that lead to uniform flowering in plant populations, ensuring higher reproductive success. So far, several genes have been identified that are involved in flowering time control. AGL20 (AGAMOUS LIKE 20) is a MADS domain gene from Arabidopsis that is activated in shoot apical meristems during the transition to flowering. By transposon tagging we have identified late flowering agl20 mutants, showing that AGL20 is involved in flowering time control. In previously described late flowering mutants of the long-day and constitutive pathways of floral induction the expression of AGL20 is down-regulated, demonstrating that AGL20 acts downstream to the mutated genes. Moreover, we can show that AGL20 is also regulated by the gibberellin (GA) pathway, indicating that AGL20 integrates signals of different pathways of floral induction and might be a central component for the induction of flowering. In addition, the constitutive expression of AGL20 in Arabidopsis is sufficient for photoperiod independent flowering and the over-expression of the orthologous gene from mustard, MADSA, in the classical short-day tobacco Maryland Mammoth bypasses the strict photoperiodic control of flowering.  相似文献   

3.
4.
5.
6.
Li J  Wang DY  Li Q  Xu YJ  Cui KM  Zhu YX 《Cell calcium》2004,35(1):71-77
PPF1 encodes a putative calcium ion carrier that affects the flowering time of transgenic Arabidopsis by modulating Ca(2+) storage capacities in chloroplasts of a plant cell. In the current work, we found that differential expression of PPF1 might affect processes of programmed cell death (PCD) since DNA fragmentation was detected in senescencing apical buds of long day-grown G2 pea (Pisum sativum L.) plants, but was not in non-senescencing short day-grown counterparts at all growth stages. An animal inhibitor of caspase-activated DNase (ICAD) homologue was detected in short day-grown plant continuously throughout the whole experiment and only in early stages of long day-grown pre-floral G2 pea apical buds. DNA fragmentation was significantly inhibited in apical meristems of transgenic Arabidopsis that over-expressed the PPF1 gene when compared to that of either wild-type control or to PPF1 (-) plants. The expression of ICAD-like protein decreased to undetectable level at 45 dpg in apical tissues of PPF1 (-) Arabidopsis, which was much earlier than that found in PPF1 (+) or wild-type controls. In epidermal cells of PPF1 (-) plants, we recorded significantly earlier calcium transient prior to PCD. We suggest that the expression of PPF1, a chloroplast localized Ca(2+) ion channel may inhibit programmed cell death in apical meristems of flowering plants by keeping a low cytoplasmic calcium content that might inhibit DNA fragmentation in plant cells.  相似文献   

7.
Control of flowering and the regulation of plant architecture have been thoroughly investigated in a number of well-studied dicot plants such as Arabidopsis, Antirrhinum, and tobacco. However, in many important monocot seed crops, molecular information on plant reproduction is still limited. To investigate the regulation of meristem identity and the control of floral transition in perennial ryegrass (Lolium perenne) we isolated a ryegrass TERMINAL FLOWER1-like gene, LpTFL1, and characterized it for its function in ryegrass flower development. Perennial ryegrass requires a cold treatment of at least 12 weeks to induce flowering. During this period a decrease in LpTFL1 message was detected in the ryegrass apex. However, upon subsequent induction with elevated temperatures and long-day photoperiods, LpTFL1 message levels increased and reached a maximum when the ryegrass apex has formed visible spikelets. Arabidopsis plants overexpressing LpTFL1 were significantly delayed in flowering and exhibited dramatic changes in architecture such as extensive lateral branching, increased growth of all vegetative organs, and a highly increased trichome production. Furthermore, overexpression of LpTFL1 was able to complement the phenotype of the severe tfl1-14 mutant of Arabidopsis. Analysis of the LpTFL1 promoter fused to the UidA gene in Arabidopsis revealed that the promoter is active in axillary meristems, but not the apical meristem. Therefore, we suggest that LpTFL1 is a repressor of flowering and a controller of axillary meristem identity in ryegrass.  相似文献   

8.
The effects of light quality on flowering time were investigated in Gypsophila paniculata, which is a long-day cut flower, and with Arabidopsis under long-day conditions with light-emitting diodes (LEDs). Gypsophila paniculata plants were grown under natural daylight and flowering was controlled by long-day treatment with a weak LED light of a single color in the night. Flowering was promoted not by blue light, but by far-red light in G. paniculata, while flowering was promoted by both light colors in Arabidopsis. FT homologs of G. paniculata GpFT1 and GpFT2 were differentially expressed under long-day conditions with white light, suggesting that they play roles in flowering at different stages of reproductive development. GpFTs and FT gene expression was not induced by far-red light in G. paniculata or Arabidopsis. Instead, the expression of the SOC1 homolog of G. paniculata GpSOC1 and SOC1 was induced by far-red light in G. paniculata and Arabidopsis. Flowering was promoted by induction of FT and SOC1 expression with blue light in Arabidopsis, whereas GpFTs and GpSOC1 expression was low with blue light induction in G. paniculata. The relationship between flowering and the expression of FT and SOC1 in Arabidopsis was confirmed with ft and soc1 mutants. These results suggest that long-day conditions with far-red light promote flowering through SOC1 and its homologs, while the conditions with blue light do not promote flowering in G. paniculata, because of low expression of GpFTs and GpSOC1 in contrast to that in Arabidopsis.  相似文献   

9.
10.
Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), whereas less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, SEASONAL FLOWERING LOCUS, which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent long-day suppression of flowering, and the early flowering that then occurs under long days is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.  相似文献   

11.
CONSTANS (CO) is an important floral regulator in the photoperiod pathway, integrating the circadian clock and light signal into a control for flowering time. It is known that CO promotes flowering in Arabidopsis under long-day conditions. CONSTANS-LIKE 9 (COL9) is a member of the CONSTANS-LIKE gene family, encoding a nuclear protein. The expression of COL9 is regulated by the circadian clock in the photoperiod pathway and is detected in various organs. Unexpectedly, overexpression of COL9 in transgenic Arabidopsis resulted in delayed flowering, while co-suppression lines and a transferred DNA (T-DNA) knockout line showed earlier flowering under long-day conditions. Overexpression of COL9 did not enhance the late-flowering phenotype in a co mutant background. Double overexpressors produced by overexpression of CO in COL9 transgenic lines showed an early flowering phenotype similar to single CO overexpressors. The pattern of oscillation of a number of circadian-associated genes remained unchanged in the COL9 transgenic lines. Compared with wild-type plants, the abundance of CO and FLOWERING LOCUS T (FT) mRNA was reduced in the COL9 overexpression lines. Our results indicate that COL9 is involved in regulation of flowering time by repressing the expression of CO, concomitantly reducing the expression of FT and delaying floral transition.  相似文献   

12.
13.
GAMYB-like Genes, Flowering, and Gibberellin Signaling in Arabidopsis   总被引:5,自引:0,他引:5  
We have identified three Arabidopsis genes with GAMYB-like activity, AtMYB33, AtMYB65, and AtMYB101, which can substitute for barley (Hordeum vulgare) GAMYB in transactivating the barley alpha-amylase promoter. We have investigated the relationships between gibberellins (GAs), these GAMYB-like genes, and petiole elongation and flowering of Arabidopsis. Within 1 to 2 d of transferring plants from short- to long-day photoperiods, growth rate and erectness of petioles increased, and there were morphological changes at the shoot apex associated with the transition to flowering. These responses were accompanied by accumulation of GAs in the petioles (GA(1) by 11-fold and GA(4) by 3-fold), and an increase in expression of AtMYB33 at the shoot apex. Inhibition of GA biosynthesis using paclobutrazol blocked the petiole elongation induced by long days. Causality was suggested by the finding that, with GA treatment, plants flowered in short days, AtMYB33 expression increased at the shoot apex, and the petioles elongated and grew erect. That AtMYB33 may mediate a GA signaling role in flowering was supported by its ability to bind to a specific 8-bp sequence in the promoter of the floral meristem-identity gene, LEAFY, this same sequence being important in the GA response of the LEAFY promoter. One or more of these AtMYB genes may also play a role in the root tip during germination and, later, in stem tissue. These findings extend our earlier studies of GA signaling in the Gramineae to include a dicot species, Arabidopsis, and indicate that GAMYB-like genes may mediate GA signaling in growth and flowering responses.  相似文献   

14.
Thakare D  Kumudini S  Dinkins RD 《Planta》2011,234(5):933-943
A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.  相似文献   

15.
16.
17.
Flowering plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals. In Arabidopsis, the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are activated to play a pivotal role in specifying floral meristems during floral transition. We show here that the emerging floral meristems require AP1 to partly specify their floral identities by directly repressing a group of flowering time genes, including SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1). In wild-type plants, these flowering time genes are normally downregulated in emerging floral meristems. In the absence of AP1, these genes are ectopically expressed, transforming floral meristems into shoot meristems. By post-translational activation of an AP1-GR fusion protein and chromatin immunoprecipitation assays, we further demonstrate the repression of these flowering time genes by induced AP1 activity and in vivo AP1 binding to the cis-regulatory regions of these genes. These findings indicate that once AP1 is activated during the floral transition, it acts partly as a master repressor in floral meristems by directly suppressing the expression of flowering time genes, thus preventing the continuation of the shoot developmental program.  相似文献   

18.
Arabidopsis amp1 mutants show pleiotropic phenotypes, including altered shoot apical meristems, increased cell proliferation, polycotyly, constitutive photomorphogenesis, early flowering time, increased levels of endogenous cytokinin, and increased cyclin cycD3 expression. We have isolated the AMP1 gene by map-based cloning. The AMP1 cDNA encodes a 706;-amino acid polypeptide with significant similarity to glutamate carboxypeptidases. The AMP1 mRNA was expressed in all tissues examined, with higher expression in roots, stems, inflorescences, and siliques. Microarray analysis identified four mRNA species with altered expression in two alleles of amp1, including upregulation of CYP78A5, which has been shown to mark the shoot apical meristem boundary. The similarity of the AMP1 protein to glutamate carboxypeptidases, and in particular to N-acetyl alpha-linked acidic dipeptidases, suggests that the AMP1 gene product modulates the level of a small signaling molecule that acts to regulate a number of aspects of plant development, in particular the size of the apical meristem.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号